

University of MinhoSchool of Engineering

Distributed Data Processing Environments

Bachelor in Data Science

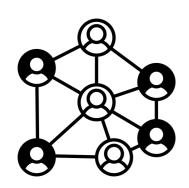
João Marco Silva

Department of Informatics joaomarco@di.uminho.pt

Beckstrom's laws of cybersecurity

Everything that is connected to the internet can be hacked.

Everything is being connected to the internet.


Everything else follows from the first two laws.

Over 5.1 billion internet users worldwide ≈ 64.4% of the global population

Source: Statista, 2023

Over 25 billion connected devices worldwide

Source: Statista, 2022

Over 50 billion connected devices by 2025

Source: Statista, 2022

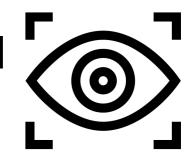
* ○

Facts & Trends

75% of cyberattacks start with an email

Source: Trend Micro, 2022

Phishing continues to be the most common initial attack vector

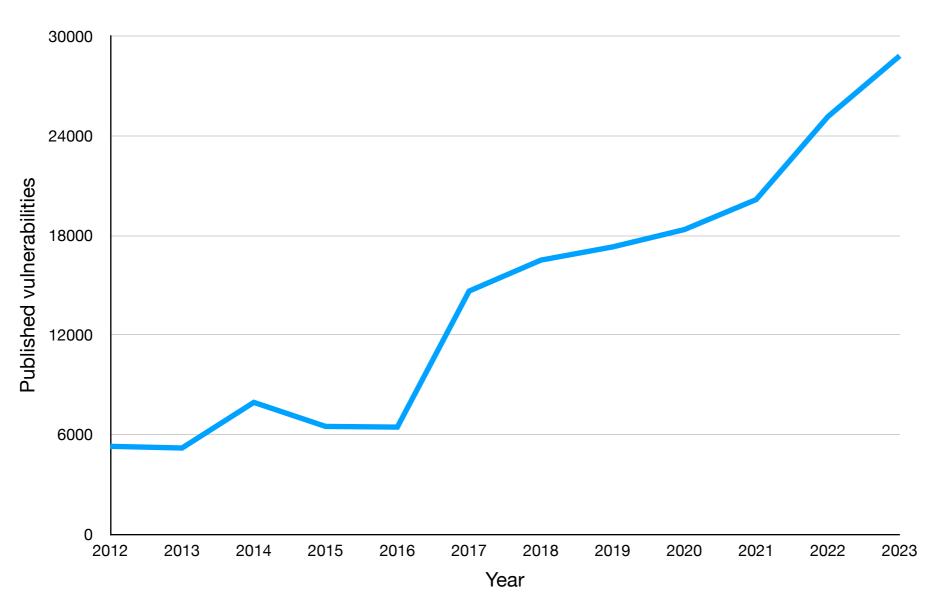

Ransomware persists despite improved detection systems

Source: IBM, 2023

Source: ENISA, 2022

Governmental surveillance targeting civil society sparked privacy concerns

Source: ENISA, 2022



4

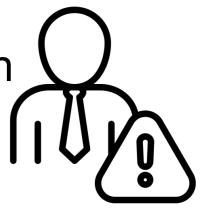
Global panorama

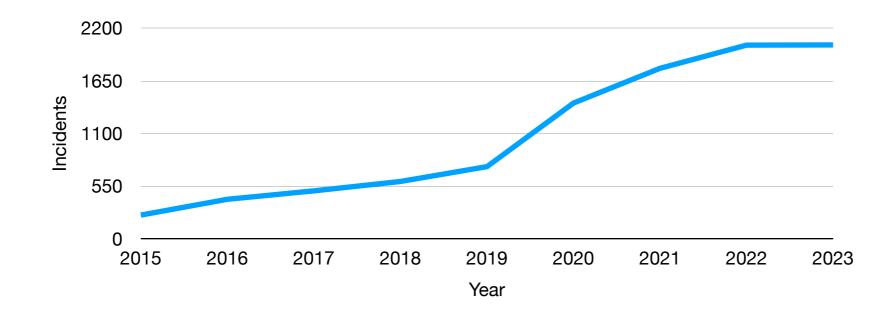
Vulnerabilities

Source: NIST, 2024

5

BDC



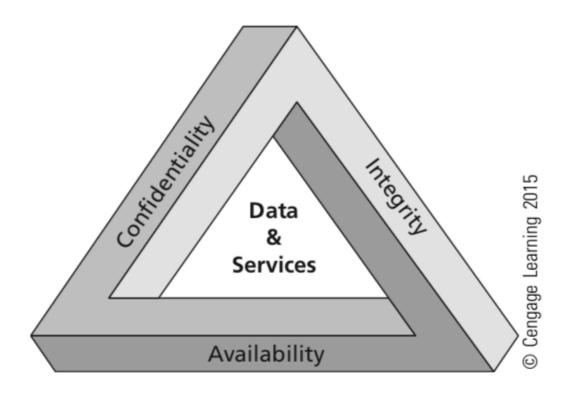

Portugal

Over the last five years, CERT.PT* registered a 268% increase in the number of cybersecurity incidents

The most frequent sources of incidents are human error (23%), vulnerability exploitation (21%), and ransomware (15%)



BDC


6

What is information security?

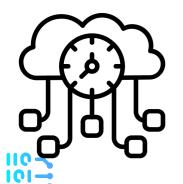
The protection of information/data and its critical elements, including the systems and hardware used to process, store, and transmit the information*.

The C.I.A. triangle

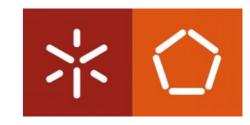
^{*} Source: The Committee on National Security Systems (CNSS)

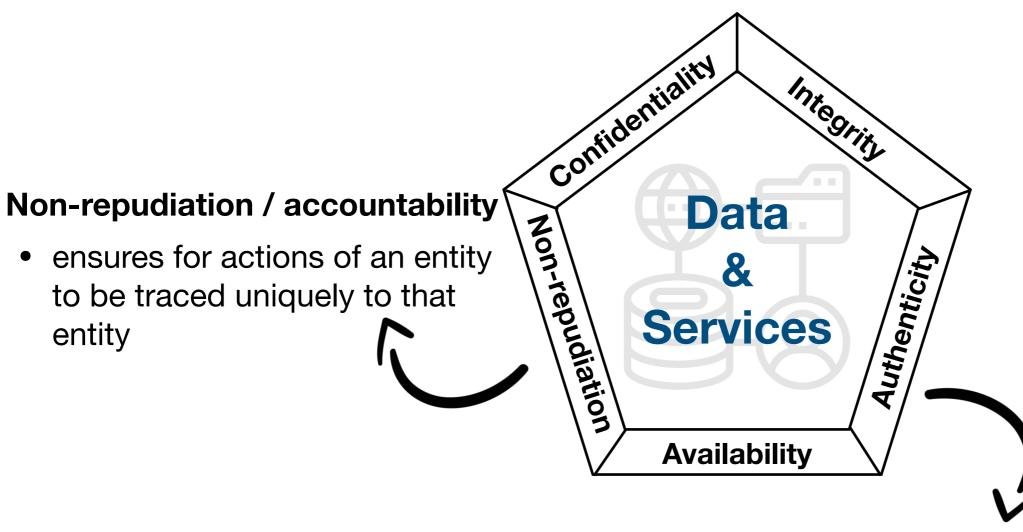
7

Confidentiality


 ensures that only users/systems with the rights and privileges to access information are able to do so.

Integrity


- ensures the consistency of information.
 - involves maintaining data accuracy, completeness, and trustworthiness over its entire life cycle.


Availability

ensures authorised users/systems access information without interference or obstruction

Concepts

- Authenticity
 - ensures that data and services are genuine, verifiable, and trusted

ConceptsAdditional key concepts

Asset: resources being protected, *e.g.*, hardware, software, data, networks, reputation, etc.

Vulnerabilities: a weakness or fault in a system or protection mechanism that opens it to attack or damage. It also includes misconfiguration.

Threat: a category of object, people, or other entities that represents a danger to an asset.

Attack: an intentional act that can damage or otherwise compromise information and the systems that support it.

Exploit: a technique used to compromise a system.

ConceptsAdditional key concepts

Attack surfaces: Reachability and exploitability of system's vulnerabilities

- Network attack surface
- Software attack surface
- Human attack surface

Do you know all the vulnerabilities your personal system is exposed to, right now?

Kernel components

The most severe vulnerability in this section could enable a local malicious application to execute arbitrary code within the context of a privileged process.

CVE	References	Туре	Severity	Component
CVE-2018-20669	A-135368228*	EoP	High	i915 driver
CVE-2019-2181	A-130571081 Upstream kernel	EoP	High	Binder driver

Android's security update summary

* ○

Vulnerabilities cve/cvss

- CVE Common Vulnerabilities and Exposures
 - a list of standardised names for vulnerabilities and other information related to publicly known security exposures
 - CVE is maintained by MITRE Corporation, which is also responsible for moderating the Editorial Board
 - cve.mitre.org
 - <u>nvd.nist.gov</u> National Vulnerability Database

Vulnerabilities CVE/CVSS

CVSS - Common Vulnerability Scoring System

Impact

CVSS v3.0 Severity and Metrics:

Base Score: 7.0 HIGH

Vector: AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H (V3

legend)

Impact Score: 5.9

Exploitability Score: 1.0

Attack Vector (AV): Local

Attack Complexity (AC): High

Privileges Required (PR): Low

User Interaction (UI): None

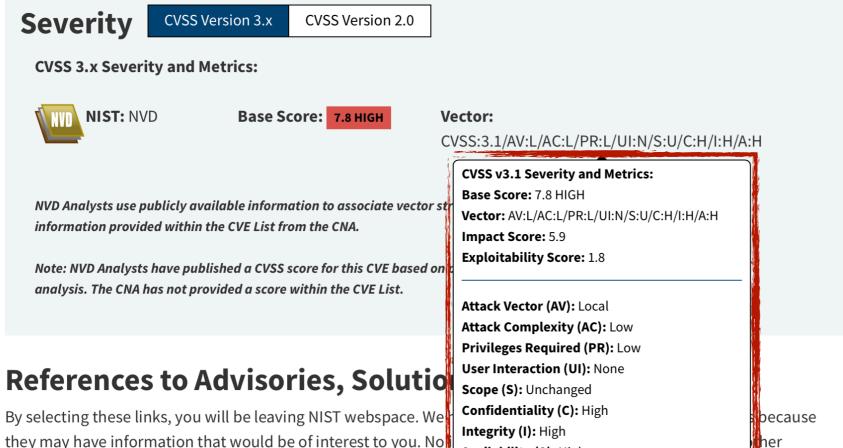
Scope (S): Unchanged

Confidentiality (C): High

Integrity (I): High

Availability (A): High

Rating	CVSS Score	
None	0.0	
Low	0.1 - 3.9	
Medium	4.0 - 6.9	
High	7.0 - 8.9	
Critical	9.0 - 10.0	



₩CVE-2018-20669 Detail

Description

An issue where a provided address with access_ok() is not checked was discovered in i915_gem_execbuffer2_ioctl in drivers/gpu/drm/i915/i915_gem_execbuffer.c in the Linux kernel through 4.19.13. A local attacker can craft a malicious IOCTL function call to overwrite arbitrary kernel memory, resulting in a Denial of Service or privilege escalation.

QUICK INFO

CVE Dictionary Entry:

CVE-2018-20669

NVD Published Date:

03/21/2019

NVD Last Modified:

04/11/2023

Source:

MITRE

they may have information that would be of interest to you. No sites being referenced, or not, from this page. There may be other were stated as

purpose. NIST does not necessarily endorse the views expressed, or concur with the facts presented on these sites. Further, NIST does not endorse any commercial products that may be mentioned on these sites. Please address comments about this page to nvd@nist.gov.

Availability (A): High

BDC

CVSS v3.1 Base Metric Group

Attack vector (AV)

Attack complexity (AC)

Privileges required (PR)

None (N); Adjacent (A); Local (L); Physical (P)

Low (L); High (H)

None (N); Low (L); High (H)

None (N); Required (R)

Scope (S)

Unchanged (U); Changed (C)

Impact metrics

Confidentiality impact (C)

None (N); Low (L); High (H)

Vulnerabilities

Exploits' databases

packet storm

Vulnerabilities

Exploits' databases

Home

Exploits

Shellcode

Papers

Google Hacking Database

Submit

Search

OpenSSL - Padding Oracle in AES-NI CBC MAC Check

EDB-ID : 39768	Author: Juraj Somorovsky	Published : 2016-05-04
CVE : CVE-2016-2107	Type: Dos	Platform: Multiple
Aliases: N/A	Advisory/Source: Link	Tags: N/A
E-DB Verified: 💚	Exploit: 🌷 Download / View Raw	Vulnerable App: N/A

« Previous Exploit Next Exploit »

Source: http://web-in-security.blogspot.ca/2016/05/curious-padding-oracle-in-openssl-cve.html

TLS-Attacker:

https://github.com/RUB-NDS/TLS-Attacker

https://github.com/offensive-security/exploit-database-bin-sploits/raw/master/bin-sploits/39768.zip

You can use TLS-Attacker to build a proof of concept and test your implementation. You just start TLS-Attacker as follows: java -jar TLS-Attacker-1.0.jar client -workflow_input rsa-overflow.xml -connect \$host:\$port

The xml configuration file (rsa-overflow.xml) looks then as follows:

10

BDC

19

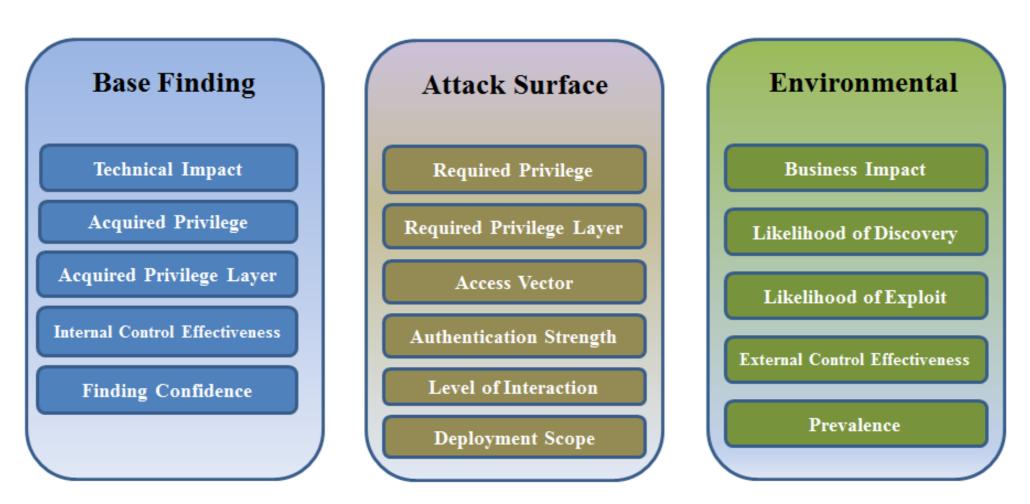
Hands-on

Select two applications typically used on your devices and search for known vulnerabilities and ways to exploit them. What do your search results reveal about your security posture?

- National Vulnerability Database NVD
 - National Institute of Standards and Technology: <u>nvd.nist.gov</u>
- MITRE: <u>cve.mitre.org</u>
- CVE details: www.cvedetails.com
- Rapid7: <u>www.rapid7.com/db</u>

* ○

Weaknesses cwe


- CWE Common Weakness Enumeration
 - Community-developed list of software an hardware weakness types
 - Category system
 - A baseline for weakness identification, mitigation and prevention
 - CWE List v4.2 https://cwe.mitre.org/data/

Weaknesses cwe

- CWE Common Weakness Enumeration
 - CWSS Common Weakness Scoring System

Source: cwe.mitre.org/cwss/cwss v1.0.1.html

Weaknesses **CWE**

Home > CWE List > CWE- Individual Dictionary Definition (4.10)

Home **About CWE List Scoring Mapping Guidance Community** News **Search**

CWE CATEGORY: Encapsulation Issues

Category ID: 1227

▼ Summary

Weaknesses in this category are related to issues surrounding the bundling of data with the methods intended to operate on that data.

Membership

Nature	Type	ID	Name
MemberOf	V	699	Software Development
HasMember	₿	1054	Invocation of a Control Element at an Unnecessarily Deep Horizontal Layer
HasMember	₿	1057	Data Access Operations Outside of Expected Data Manager Component
HasMember	₿	1062	Parent Class with References to Child Class
HasMember	₿	1083	Data Access from Outside Expected Data Manager Component
HasMember	₿	1090	Method Containing Access of a Member Element from Another Class
HasMember	₿	1100	Insufficient Isolation of System-Dependent Functions
HasMember	₿	1105	Insufficient Encapsulation of Machine-Dependent Functionality

Content History

✓ Submissions				
Submission Date	Submitter	Organization		
2020-01-07	CWE Content Team	MITRE		

BDC

University of Minho

Threats

Kernel components

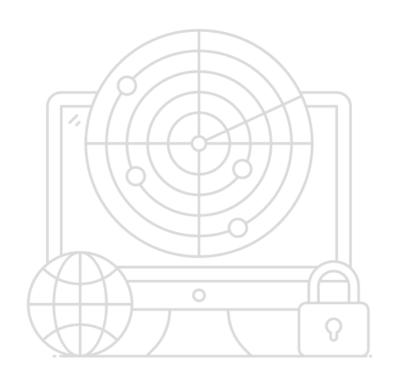
The most severe vulnerability in this section could enable a local malicious application to execute arbitrary code within the context of a privileged process.

CVE	References	Туре	Severity	Component
CVE-2018-20669	A-135368228*	EoP	High	i915 driver
CVE-2019-2181	A-130571081 Upstream kernel	EoP	High	Binder driver

Android's security update summary

Threat: a category of object, people, or other entities that represents a danger to an asset.

Spoofing


Tampering

Repudiation

Information Disclosure

Denial of Service

Elevation of Privilege

- Spoofing
 - Pretending to be something or someone other than yourself - Impersonating a system or a person
 - Property violated: Authentication
 - Typical victims: processes; external entities; people
 - Examples
 - email spoofing changing email header
 - DNS spoofing

BDC

- Tampering
 - Modifying data on disk, on a network, or in memory
 - Property violated: Integrity
 - Typical victims: data stores; data flows; processes
 - Examples
 - adding or removing packets traversing a network
 - changing values in a DB

- Repudiation
 - The act of refusing authoring of something that happened
 - Property violated: Non-Repudiation
 - Typical victims: processes; people
 - Examples
 - neutralize the logging system
 - using untrusted certificates

- Information Disclosure
 - Disclosing information to an entity not authorised to have access to it
 - Property violated: Confidentiality
 - Typical victims: processes; data stores; data flows
 - Examples
 - transmitting clear text
 - file name and path disclosure

- Denial of Service DoS
 - Absorbing resources needed to provide a service
 - Property violated: Availability
 - Typical victims: processes; data stores; data flows
 - Examples
 - a process that fills up the disk
 - massive requests to a DNS

- Elevation of Privilege EoP
 - Allowing an entity to do something it's not authorised to do
 - Property violated: Authorisation
 - Typical victims: processes
 - Examples
 - a normal user executing code as admin
 - allowing a remote person without any privileges to run code

Threats Threats


Assets and example of threats

	Availability	Confidentiality	Integrity
Hardware	Equipment is stolen or disabled, thus denying service	An unencrypted USB drive is stolen	Tampering with components to gain access to I/O
Software	Programs are deleted, denying access to users		
Data	Files are deleted, denying access to users	An unauthorized read of data is performed. An analysis of statistical data reveals underlying data	Existing files are modified or new files are fabicated
Communication lines and Networks	Messages are destroyed or deleted. Communication lines or networks are rendered unavailable	Messages are read. The traffic pattern of messages is observed	Messages are modified, delayed, reordered, or duplicated. False messages are fabricated

Source: Shosteck, A. Threat Modelling

32

What about distributed data processing?

Select and analyse some of these vulnerabilities. How do you interpret your study?

Pandas

9.8 CRITICAL

CVE-2024-23752 9.8 CRITICAL

CVE-2024-21642 7.5 HIGH

CVE-2024-45595

OpenSSL

CVE-2023-35784 9.8 CRITICAL

CVE-2024-45238 8.8 HIGH

CVE-2023-3446 5.3 MEDIUM

VMware

CVE-2024-38811

7.8 HIGH

CVE-2023-52885

7.8 HIGH

Docker

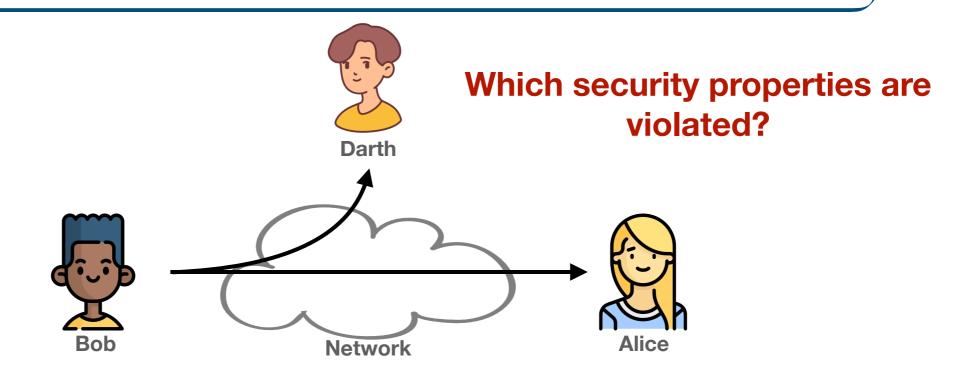
CVE-2024-8696

9.8 CRITICAL

CVE-2024-8695

9.8 CRITICAL

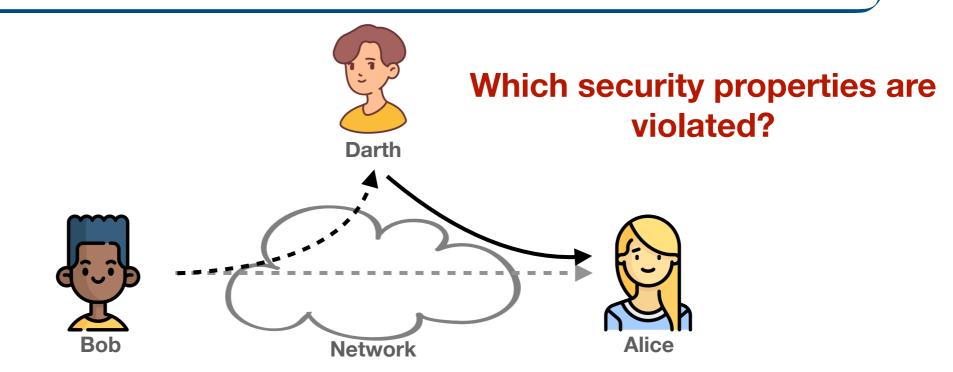
CVE-2024-41958


7.2 HIGH

Passive attacks: eavesdropping or monitoring transmissions without any alteration of the data.

- Release of message contents
- Traffic analysis

Which threats?


Passive attacks are challenging to detect, as there is no change to the messages' content. Their prevention usually involves cryptographic techniques.

Active attacks: involve some modification of the data stream or the creation of a false stream.

Which threats?

- Masquerade
- Replay
- Modification of messages
- Message destruction

Usually, in addition to prevention (which is difficult due to the large number of attack types), the main defence strategy is trying to detect active attacks.

A processing or communication service that is provided by a system to give a specific kind of protection to system resources.

RFC 4949

Security services implement security policies and are implemented by security mechanisms.

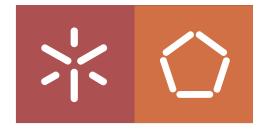
- Authentication
 - Peer entity authentication
 - Data-origin authentication
- Access control
- Data confidentiality
 - Connection confidentiality
 - Connectionless confidentiality
 - Selective-field confidentiality
 - Traffic-flow confidentiality

- Data integrity
 - Connection integrity with recovery
 - Connection integrity without recovery
 - Selection-field connection integrity
 - Connectionless integrity
 - Selective-field connectionless integrity
- Nonrepudiation
 - Origin
 - Destination

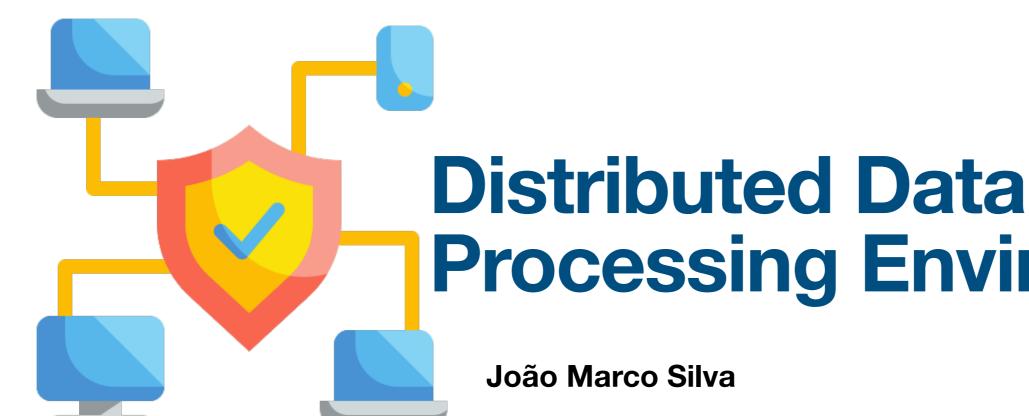
A process (or a device incorporating such a process) that is designed to detect, prevent or recover from a security attack.

Specific mechanisms

May be incorporated into the appropriate protocol layer in order to provide some of the OSI security services.


- Encipherment
- Digital signature
- Access control
- Data integrity
- Authentication exchange
- Traffic padding
- Routing control
- Notarisation

Pervasive mechanisms


Mechanisms that are not specific to any particular OSI security service or protocol layer.

- Trusted functionality
- Security label
- Event detection
- Security audit trail
- Security recovery

University of Minho School of Engineering

Processing Environments

Department of Informatics joaomarco@di.uminho.pt