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Roadmap

* Problem too big to be efficiently stored and processed by
a single server

— Distributed-parallel data processing

* Problem too complex to be expressed as a single step
and/or with a single tool

- DAG orquestration
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Input data set

Map Reduce

* Datais split in chunks that can be handled
separately

* Done by the framework, but might need help
from the programmer
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Input data set

Map Reduce

—{ M > k¥ e |nput data items are mapped to
I IR zero or more key/value pairs
——— k., . . .
(e > Ek :; * Map function is provided by the
I programmer
— Can deal with arbitrary and
e (K, v) unstructured data formats (e.qg.,
(k,,v) plain text)
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Input data set

Map Reduce

Ve

Map

. J

SEE—

Map

—
S

Map

~————

U. Minho

(ky,(v,v,v))

(k,,(v,v,v,v))

v * Key-value pairs are grouped by key
* Done by the framework
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Input data set

Map Reduce
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Map 4 * Sequences of values for each key
are reduced to 0 or more output
data items
* Reduce function is provided by the
programmer
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Input data set

Map Reduce
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(k;v>  When reduce is associative, values

for the same key from the same
mapper can be combined

* Lessens the data to be grouped
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Selection and projection

* Example:
select x, y+1 from ... wherez = ..;

« Can be performed by the Map stage:
— Return computed key/value for those items that match
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Grouped aggregates

* Example:
select x,sum(y) from ... group by x;

* In the Map stage:
— Return Key=x and Value=y

* Optionally use a Combiner stage

 In the Reduce stage:
- Iterate over values and return Key,sum(Values)
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Map/Broadcast join

* Example:
select a.y,b.z from A join B on a.x=b.x;

* Assumptions:
— One data set (B) is small
— No assumption on number of occurrences

* Before Map, cache B in all workers

* In the Map stage:
— Lookup a.x in B, getting b.z
~ Returna.yand b.z
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Map/Broadcast join

Broadcast Hash Join

‘ Worker Node
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[ Driver ‘
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Mo
shuffing,
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maintained.
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Memory

| Step #2: Hash Join

Large DF,
partition 3
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Shuffle join

Example:

select a.y,b.z from A join B on a.x=b.x;

Assumptions:

Both input data sets are large
Small number of ocurrences of each key

In the Map stage:

For A: Return Key=x and Value=(LEFT,y)
For B: Return Key=x and Value=(RIGHT,z)

In the Reduce stage:

Collect all (LEFT,...) and (RIGHT,...) pairs
Return all combinations

Large Scale Data Management
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Shuffle

Shuffle Hash Join
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Sort

* Example:
select x,y from ... order by y;

* In the Map stage:
— Return Key=y and Value=x

* Use one identity reducer task

Large Scale Data Management
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Chaining
* Multiple MapReduce jobs can be chained to compose
operations

* This is necessary when sorting and grouping need to be
done on multiple criteria

- e.g., joinon x, group by y

Large Scale Data Management
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MR: Efficiency limitations

i —> (k,(vvv) — | Reduce [P 4:""?
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file ap to sort and (agaj...) reduce file
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even if it results -
from another job even if it /-
fits in memory even if it
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Need to avoid writing to disk so much!
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MR:

Usability limitations
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™

Distributed dataflow Spcﬁ(\z

* Generalized MapReduce:
- Map, shuffle, reduce, and persistence stages
— Can be arbitrarily composed

 Efficiency improved with:
— Caching
— Query optimization and code generation
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Example

public class GroupByTest {
public static void main(String[] args) throws Exception {
int numMappers = 100;
int numKVPairs = 10000;
int valSize = 1000;
int numReducers = 36;

SparkConf conf = new SparkConf().setMaster("local").setAppName("GroupBy Test");
JavaSparkContext sc = new JavaSparkContext(conf);

List<Integer> data = IntStream.range(0, numMappers).boxed().collect(Collectors.tolList());
JavaPairRDD<Integer, byte[]> pairsl = sc.parallelize(data, numMappers)
.flatMapToPair(p -> {
Random ranGen = new Random();
Stream<Tuple2<Integer, byte[]>> arrl = IntStream.range(0, numKVPairs).mapToObj (i -> {
byte[] byteArr = new byte[valSize];
ranGen.nextBytes (byteArr);
return new Tuple2<>(ranGen.nextInt(), byteArr);
1)

return arrl.iterator();

1)

long countl
long count2

pairsl.count();
pairsl.groupByKey(numReducers).count();

System.out.println(countl+" "+count2);

Large Scale Data Management
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Example

pairsi
arr1: Array[ ( random(int), Byte[1000] ) ] countl
with 10000 elements
1 Byte[1000]

Array[Int](100) 3 Byte[1000]
pairs1.groupByKey()
5 /_____.—y 2 Byte[1000] -
Byte[1000] Array[ ( random(int), Array[Byte[1000]] ) ]
.
5 Byte[1000]
2 2 Byte[1000] | Byte[1000] | Byte[1000]
3 arri 1 | Byte[1000] | Byte[1000]
4 | 3 Byte[1000]
| count2
arr ... Byte[1000]
98 - Eytelioo] 5 Byte[1000] Byte[1000]
09 1 Byte[1000]
.. Byte[1000]
2 Byte[1000] h
Computed twice! |
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https://github.com/JerryLead/SparkInternals

Caching example

public class GroupByTest {
public static void main(String[] args) throws Exception {
int numMappers = 100;
int numKVPairs = 10000;
int valSize = 1000;
int numReducers = 36;

SparkConf conf = new SparkConf().setMaster("local").setAppName("GroupBy Test");
JavaSparkContext sc = new JavaSparkContext(conf);

List<Integer> data = IntStream.range (0, numMappers).boxed().collect(Collectors.tolList());
JavaPairRDD<Integer, byte[]> pairsl = sc.parallelize(data, numMappers)
.flatMapToPair(p -> {
Random ranGen = new Random();
Stream<Tuple2<Integer, byte[]>> arrl = IntStream.range(0, numKVPairs).mapToObj (i -> {
byte[] byteArr = new byte[valSize];
ranGen.nextBytes (byteArr);
return new Tuple2<>(ranGen.nextInt(), byteArr);

})s
ebwisR g rl.iterator();
} Store interim
long countl = pairsl.count(); hSU't for both jObS

long count2 pairsl.groupByKey(numReducers) .coumci),;

System.out.println(countl+" "+count2);
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https://github.com/JerryLead/SparkInternals

Query processing

SQL Query

. Logical Physical
Analysis  optimization  Planning

DataFrame

Logical

Unresolved . Optimized Physical
Planl] "‘°9'°a' F""‘“"I lLogical Plan <

Catalog

Large Scale Data Management

Cost Model

Code
Generation

Selected

Physical RDDs
Plan
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Logical Physical Code
Exa I I l p I e Analysis  gptimizaion Pl

anning Generation
SQL Query
Selected
Unresolved ptimized
=" A Logical Plang“’a' P'a"}", Logical Plan [ § g ‘ F’hvs'cal RDDs
DataFrame
- he followi

L ]
Consider the following code:

Dataset<Row> ds = spark.sql("select town from " +
"post_code natural join invoice " +
"natural join item where desc='stuff'");

ds.show() ;

ds.explain(true);

Shows how the query is
processed in the Spark SQL pipeline
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RDDs

. Logical Physical Code
EX a m I e Analysis Optimization  Planning Generation
SQL Query 2
8

imi. Selected

Unresolved & Optimized A

Logical Plan [ A/ -09°¢a! Pan ™1 ogical pian Physical
Catalog

Plan

DataFrame

« Parsed logical plan:

"Project [ 'town]
+- 'Filter ('desc = stuff)
+- 'Join NaturalJoin(Inner)
:- 'Join NaturalJoin(Inner)
:- 'UnresolvedRelation [post code], [], false
:  +- 'UnresolvedRelation [invoice], [], false
+- 'UnresolvedRelation [item], [], false
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m i Log ical Physical
E X a I e Analysis Qgtimization Planning
SQL Query
nr ive ical Plan imiz:

DataFrame

Analyzed logical plan:

town: string
Project [town#59]
+- Filter (desc#39 = stuff)
+- Project [item#17, code#58, town#59, invoice#16, desc#39]
+- Join Inner, (item#17 = item#38)
:- Project [code#58, town#59, invoice#16, item#17]
+- Join Inner, (code#58 = code#18)
:- SubqueryAlias post code
+- Relation[code#58,town#59] csv
+- SubqueryAlias invoice
+- Relation[invoice#16,item#17,code#18] csv
+- SubqueryAlias item
+- Relation[item#38,desc#39] csv

Large Scale Data Management

RDDs
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Log ical Phys ical Code

Example
SQL Query
Unresolved imizi
ogical Plan ‘

Logical Plan Logical Plai

RDDs

DataFrame

Optimized logical plan:

Project [town#59]
+- Join Inner, (item#17 = item#38)
:- Project [town#59, item#17]
+- Join Inner, (code#58 = code#18)
:- Filter isnotnull(code#58)
+- Relation[code#58,town#59] csv

+- Project [item#17, code#18]
+- Filter (isnotnull(code#18) AND isnotnull(item#17))

+- Relation[invoice#16,item#17,code#18] csv

+- Project [item#38]
+- Filter ((isnotnull(desc#39) AND (desc#39 = stuff)) AND isnotnull

+- Relation[item#38,desc#39] csv

Using ds.explain(“cost”) shows additional statistics
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Code generation

* Converts a physical plan into actual code that can be
executed

« Simple code generation:
— Produces sequence of generic RDD transformations

* Whole stage code generation:

— Produces custom RDD transformation combining all
operations in each stage

- Resulting code is very different from manually written code...

Large Scale Data Management
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Anal Logical Physical
nalysis Optimization  Planning
SQL Query

Optimized

Unresolved
}ogcalPl Logical Plan = ooical Plan
DataFrame

N
‘ Compiles to a single Map step!

* Physical plan:

*(3) Project [town#59]
+- *(3) BroadcastHashJoin [item#17], [item#38], Inner, BuildRig
:- *(3) Project [town#59, item#l7]
+- *(3) BroadcastHashJoin [code#58], [code#18], Inner, Bu
:- BroadcastExchange HashedRelationBroadcastMode(List(
+- *(1) Filter isnotnull(code#58)
+- FileScan csv [code#58,town#59] Batched: false
+- FileScan csv [item#17,code#18] Batched: false, D
‘- BroadcastExchange HashedRelationBroadcastMode(List(input]
+- *(2) Project [item#38]
+- *(2) Filter ((isnotnull(desc#39) AND (desc#39 = stu
+- FileScan csv [item#38,desc#39] Batched: false, D

Using ds.explain(“codegen”) shows final Java code

Large Scale Data Management

pl,;::=,

Stage 5

Filter

BroadcagtHashJoin

Project

BroadcagtHashJoin

Project

mapPartitipnsinternal
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Summary
* Distributed-parallel processing is applicable for extremely
large datasets

* SQL compilation is extended to use distributed
operators:

— Data exchange as a new dimension for optimization
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