Distributed Data Processing Environments

Joseé Orlando Pereira

Departamento de Informatica
Universidade do Minho

-l'l'\

Roadmap

* Problem too big to be efficiently stored and processed by
a single server

— Distributed-parallel data processing

* Problem too complex to be expressed as a single step
and/or with a single tool

- DAG orquestration

U. Minho Distributed Data Processing Environments 2

Input data set

Map Reduce

* Datais split in chunks that can be handled
separately

* Done by the framework, but might need help
from the programmer

U. Minho Distributed Data Processing Environments 3
Image adapted from: M. Tamer Ozsu, Patrick Valduriez. Principles of Distributed Database Systems (3rd Edition)

Input data set

Map Reduce

—{ M > k¥ e |nput data items are mapped to
I IR zero or more key/value pairs
——— k., . . .
(e > Ek :; * Map function is provided by the
I programmer
— Can deal with arbitrary and
e (K, v) unstructured data formats (e.qg.,
(k,,v) plain text)
U. Minho Distributed Data Processing Environments 4

Image adapted from: M. Tamer Ozsu, Patrick Valduriez. Principles of Distributed Database Systems (3rd Edition)

Input data set

Map Reduce

Ve

Map

. J

SEE—

Map

—
S

Map

~————

U. Minho

(ky,(v,v,v))

(k,,(v,v,v,v))

v * Key-value pairs are grouped by key
* Done by the framework

Distributed Data Processing Environments 5
Image adapted from: M. Tamer Ozsu, Patrick Valduriez. Principles of Distributed Database Systems (3rd Edition)

Input data set

Map Reduce

—> Map

L (k,v)
— (kv \
_> Map _> (k2 V) N
— (kV) Group Lo (ky,(v,v,v)) > 3
—» Map > (k,,V) i J @ g
S;ci(up)—b (k. (v,v,v,v)) —Pl Reduce > §'
Map 4 * Sequences of values for each key
are reduced to 0 or more output
data items
* Reduce function is provided by the
programmer
U. Minho Distributed Data Processing Environments 6

Image adapted from: M. Tamer Ozsu, Patrick Valduriez. Principles of Distributed Database Systems (3rd Edition)

Input data set

Map Reduce

l
LT

Map

U. Minho

(k.,v)
(kz,V) \
(k,,V) .

Combine
w% NI
(k,,v)

(k,v) /

(k;v> When reduce is associative, values

for the same key from the same
mapper can be combined

* Lessens the data to be grouped

Distributed Data Processing Environments 7

Image adapted from: M. Tamer Ozsu, Patrick Valduriez. Principles of Distributed Database Systems (3rd Edition)

Selection and projection

* Example:
select x, y+1 from ... wherez = ..;

« Can be performed by the Map stage:
— Return computed key/value for those items that match

Large Scale Data Management

Grouped aggregates

* Example:
select x,sum(y) from ... group by x;

* In the Map stage:
— Return Key=x and Value=y

* Optionally use a Combiner stage

 In the Reduce stage:
- Iterate over values and return Key,sum(Values)

Large Scale Data Management

Map/Broadcast join

* Example:
select a.y,b.z from A join B on a.x=b.x;

* Assumptions:
— One data set (B) is small
— No assumption on number of occurrences

* Before Map, cache B in all workers

* In the Map stage:
— Lookup a.x in B, getting b.z
~ Returna.yand b.z

Large Scale Data Management

Map/Broadcast join

Broadcast Hash Join

‘ Worker Node

Small
| DF{copy)
r

In Memory

b
w | Step #2: Hash Join

Worker Node

Large DF,
partition 0

[Driver ‘
Small DF
Worker Node Worker Mode
Small | In Memory Small | In Memory
| DF{copy) DF({copy)
F A
v | Step #2: Hash Join v | Step #2: Hash Join
Large DF, Large DF,
partition 1 partition 2
Mo
shuffing,
paralielism
maintained.

Large Scale Data Management
Image from: https://towardsdatascience.com/strategies-of-spark-join-cOe7b4572bcf

Memory

| Step #2: Hash Join

Large DF,
partition 3

11

https://towardsdatascience.com/strategies-of-spark-join-c0e7b4572bcf

Shuffle join

Example:

select a.y,b.z from A join B on a.x=b.x;

Assumptions:

Both input data sets are large
Small number of ocurrences of each key

In the Map stage:

For A: Return Key=x and Value=(LEFT,y)
For B: Return Key=x and Value=(RIGHT,z)

In the Reduce stage:

Collect all (LEFT,...) and (RIGHT,...) pairs
Return all combinations

Large Scale Data Management

12

Shuffle

Shuffle Hash Join

- Step #2: Hash Join Step #2: Hash Join Relation
Relation | | . |:| __ | | 41
#1 join_key = 1 (
Worker 0 » Worker 1
join_key =3 L
join_key =4

Relation v | step #1: Shuffiing | T

#1 #1
Worker 3 N
join_key =2 [Worker 4 J

ﬁ | Step #2: Hash Join | | Step #2: Hash Join |

[> Chunk of data of relation #1
[}——> Chunk of data of relation #2

Large Scale Data Management 13
Image from: https://towardsdatascience.com/strategies-of-spark-join-cOe7b4572bcf

https://towardsdatascience.com/strategies-of-spark-join-c0e7b4572bcf

Sort

* Example:
select x,y from ... order by y;

* In the Map stage:
— Return Key=y and Value=x

* Use one identity reducer task

Large Scale Data Management

14

Chaining
* Multiple MapReduce jobs can be chained to compose
operations

* This is necessary when sorting and grouping need to be
done on multiple criteria

- e.g., joinon x, group by y

Large Scale Data Management

15

MR: Efficiency limitations

i —> (k,(vvv) — | Reduce [P 4:""?
° L
g [: 5
= —> Reduce > =
(ky(v,v,v,)) . .
even if going
to another jobj
\ J [7 \ v J
Y \ J Y \ J) \ J }
read from M persist M persist Y write to
file ap to sort and (agaj...) reduce file
- group by
even if it results -
from another job even if it /-
fits in memory even if it
fits in memory
Need to avoid writing to disk so much!
Large Scale Data Management 16

Image adapted from: M. Tamer Ozsu, Patrick Valduriez. Principles of Distributed Database Systems (3rd Edition)

MR:

Usability limitations

—>

- —P>

v +

sl s >) o poanee | B

S &

= ©

2 a8 =

= a lot of g
» ViV, V) “boilerplate” S

\ Y (Y

read from persist wnte
file (again...) reduce

pair

by
re-write from sort without re-write from optional but...
scratch group? scratch all or nothing

Need to freely compose stages!

Large Scale Data Management 17

Image adapted from: M. Tamer Ozsu, Patrick Valduriez. Principles of Distributed Database Systems (3rd Edition)

™

Distributed dataflow Spcﬁ(\z

* Generalized MapReduce:
- Map, shuffle, reduce, and persistence stages
— Can be arbitrarily composed

 Efficiency improved with:
— Caching
— Query optimization and code generation

Large Scale Data Management 18

Example

public class GroupByTest {
public static void main(String[] args) throws Exception {
int numMappers = 100;
int numKVPairs = 10000;
int valSize = 1000;
int numReducers = 36;

SparkConf conf = new SparkConf().setMaster("local").setAppName("GroupBy Test");
JavaSparkContext sc = new JavaSparkContext(conf);

List<Integer> data = IntStream.range(0, numMappers).boxed().collect(Collectors.tolList());
JavaPairRDD<Integer, byte[]> pairsl = sc.parallelize(data, numMappers)
.flatMapToPair(p -> {
Random ranGen = new Random();
Stream<Tuple2<Integer, byte[]>> arrl = IntStream.range(0, numKVPairs).mapToObj (i -> {
byte[] byteArr = new byte[valSize];
ranGen.nextBytes (byteArr);
return new Tuple2<>(ranGen.nextInt(), byteArr);
1)

return arrl.iterator();

1)

long countl
long count2

pairsl.count();
pairsl.groupByKey(numReducers).count();

System.out.println(countl+" "+count2);

Large Scale Data Management

19

Example

pairsi
arr1: Array[(random(int), Byte[1000])] countl
with 10000 elements
1 Byte[1000]

Array[Int](100) 3 Byte[1000]
pairs1.groupByKey()
5 /_____.—y 2 Byte[1000] -
Byte[1000] Array[(random(int), Array[Byte[1000]])]
.
5 Byte[1000]
2 2 Byte[1000] | Byte[1000] | Byte[1000]
3 arri 1 | Byte[1000] | Byte[1000]
4 | 3 Byte[1000]
| count2
arr ... Byte[1000]
98 - Eytelioo] 5 Byte[1000] Byte[1000]
09 1 Byte[1000]
.. Byte[1000]
2 Byte[1000] h
Computed twice! |
Large Scale Data Management 20

Image from: https://github.com/JerryLead/Sparkinternals

https://github.com/JerryLead/SparkInternals

Caching example

public class GroupByTest {
public static void main(String[] args) throws Exception {
int numMappers = 100;
int numKVPairs = 10000;
int valSize = 1000;
int numReducers = 36;

SparkConf conf = new SparkConf().setMaster("local").setAppName("GroupBy Test");
JavaSparkContext sc = new JavaSparkContext(conf);

List<Integer> data = IntStream.range (0, numMappers).boxed().collect(Collectors.tolList());
JavaPairRDD<Integer, byte[]> pairsl = sc.parallelize(data, numMappers)
.flatMapToPair(p -> {
Random ranGen = new Random();
Stream<Tuple2<Integer, byte[]>> arrl = IntStream.range(0, numKVPairs).mapToObj (i -> {
byte[] byteArr = new byte[valSize];
ranGen.nextBytes (byteArr);
return new Tuple2<>(ranGen.nextInt(), byteArr);

})s
ebwisR g rl.iterator();
} Store interim
long countl = pairsl.count(); hSU't for both jObS

long count2 pairsl.groupByKey(numReducers) .coumci),;

System.out.println(countl+" "+count2);

Large Scale Data Management 21
Adapted from: https://github.com/JerryLead/Sparkinternals

https://github.com/JerryLead/SparkInternals

Query processing

SQL Query

. Logical Physical
Analysis optimization Planning

DataFrame

Logical

Unresolved . Optimized Physical
Planl] "‘°9'°a' F""‘“"I lLogical Plan <

Catalog

Large Scale Data Management

Cost Model

Code
Generation

Selected

Physical RDDs
Plan

22

Logical Physical Code
Exa I I l p I e Analysis gptimizaion Pl

anning Generation
SQL Query
Selected
Unresolved ptimized
=" A Logical Plang“’a' P'a"}", Logical Plan [§ g ‘ F’hvs'cal RDDs
DataFrame
- he followi

L]
Consider the following code:

Dataset<Row> ds = spark.sql("select town from " +
"post_code natural join invoice " +
"natural join item where desc='stuff'");

ds.show() ;

ds.explain(true);

Shows how the query is
processed in the Spark SQL pipeline

Large Scale Data Management 23

RDDs

. Logical Physical Code
EX a m I e Analysis Optimization Planning Generation
SQL Query 2
8

imi. Selected

Unresolved & Optimized A

Logical Plan [A/ -09°¢a! Pan ™1 ogical pian Physical
Catalog

Plan

DataFrame

« Parsed logical plan:

"Project ['town]
+- 'Filter ('desc = stuff)
+- 'Join NaturalJoin(Inner)
:- 'Join NaturalJoin(Inner)
:- 'UnresolvedRelation [post code], [], false
: +- 'UnresolvedRelation [invoice], [], false
+- 'UnresolvedRelation [item], [], false

Large Scale Data Management 24

m i Log ical Physical
E X a I e Analysis Qgtimization Planning
SQL Query
nr ive ical Plan imiz:

DataFrame

Analyzed logical plan:

town: string
Project [town#59]
+- Filter (desc#39 = stuff)
+- Project [item#17, code#58, town#59, invoice#16, desc#39]
+- Join Inner, (item#17 = item#38)
:- Project [code#58, town#59, invoice#16, item#17]
+- Join Inner, (code#58 = code#18)
:- SubqueryAlias post code
+- Relation[code#58,town#59] csv
+- SubqueryAlias invoice
+- Relation[invoice#16,item#17,code#18] csv
+- SubqueryAlias item
+- Relation[item#38,desc#39] csv

Large Scale Data Management

RDDs

25

Log ical Phys ical Code

Example
SQL Query
Unresolved imizi
ogical Plan ‘

Logical Plan Logical Plai

RDDs

DataFrame

Optimized logical plan:

Project [town#59]
+- Join Inner, (item#17 = item#38)
:- Project [town#59, item#17]
+- Join Inner, (code#58 = code#18)
:- Filter isnotnull(code#58)
+- Relation[code#58,town#59] csv

+- Project [item#17, code#18]
+- Filter (isnotnull(code#18) AND isnotnull(item#17))

+- Relation[invoice#16,item#17,code#18] csv

+- Project [item#38]
+- Filter ((isnotnull(desc#39) AND (desc#39 = stuff)) AND isnotnull

+- Relation[item#38,desc#39] csv

Using ds.explain(“cost”) shows additional statistics

Large Scale Data Management 26

Code generation

* Converts a physical plan into actual code that can be
executed

« Simple code generation:
— Produces sequence of generic RDD transformations

* Whole stage code generation:

— Produces custom RDD transformation combining all
operations in each stage

- Resulting code is very different from manually written code...

Large Scale Data Management

27

Anal Logical Physical
nalysis Optimization Planning
SQL Query

Optimized

Unresolved
}ogcalPl Logical Plan = ooical Plan
DataFrame

N
‘ Compiles to a single Map step!

* Physical plan:

*(3) Project [town#59]
+- *(3) BroadcastHashJoin [item#17], [item#38], Inner, BuildRig
:- *(3) Project [town#59, item#l7]
+- *(3) BroadcastHashJoin [code#58], [code#18], Inner, Bu
:- BroadcastExchange HashedRelationBroadcastMode(List(
+- *(1) Filter isnotnull(code#58)
+- FileScan csv [code#58,town#59] Batched: false
+- FileScan csv [item#17,code#18] Batched: false, D
‘- BroadcastExchange HashedRelationBroadcastMode(List(input]
+- *(2) Project [item#38]
+- *(2) Filter ((isnotnull(desc#39) AND (desc#39 = stu
+- FileScan csv [item#38,desc#39] Batched: false, D

Using ds.explain(“codegen”) shows final Java code

Large Scale Data Management

pl,;::=,

Stage 5

Filter

BroadcagtHashJoin

Project

BroadcagtHashJoin

Project

mapPartitipnsinternal

28

Summary
* Distributed-parallel processing is applicable for extremely
large datasets

* SQL compilation is extended to use distributed
operators:

— Data exchange as a new dimension for optimization

Large Scale Data Management 29

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

