Distributed Data Processing Environments

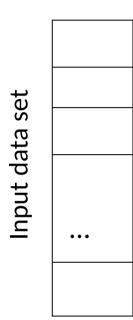
José Orlando Pereira

Departamento de Informática Universidade do Minho

Roadmap

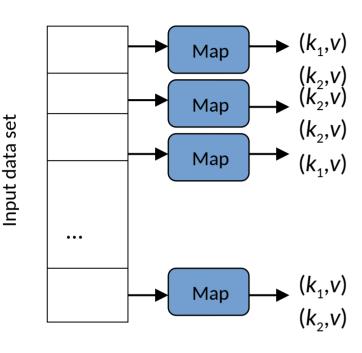
- Problem too big to be efficiently stored and processed by a <u>single server</u>
 - Distributed-parallel data processing
- Problem too complex to be expressed as a single step and/or with a single tool
 - DAG orquestration

Map Reduce

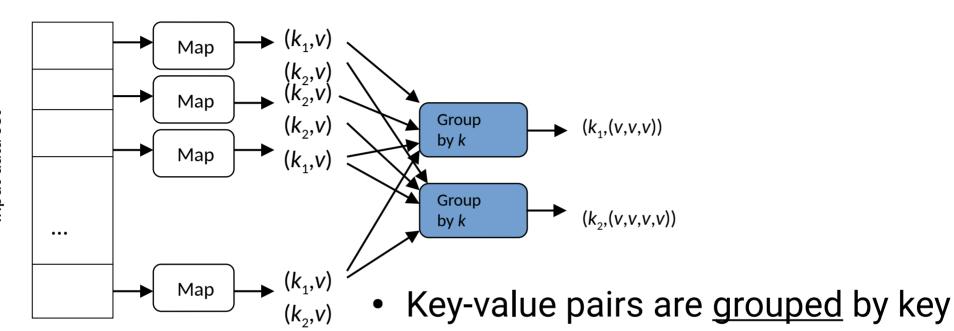


- Data is <u>split</u> in chunks that can be handled separately
- Done by the framework, but might need help from the programmer

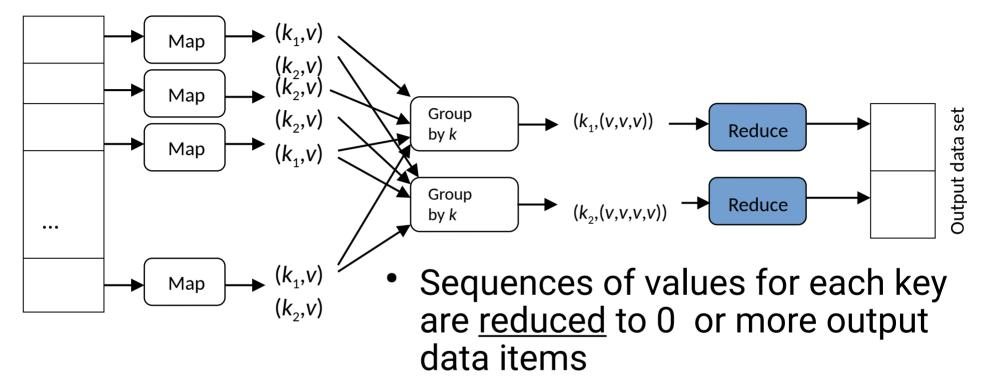
Map Reduce



- Input data items are <u>mapped</u> to zero or more key/value pairs
- Map function is provided by the programmer
 - Can deal with arbitrary and unstructured data formats (e.g., plain text)

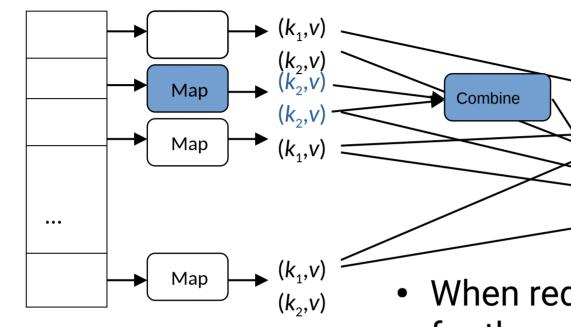


Done by the framework



Reduce function is provided by the programmer

Map Reduce



- When reduce is associative, values for the same key from the same mapper can be <u>combined</u>
- Lessens the data to be grouped

Input data set

Selection and projection

Example:

```
select x, y+1 from ... where z = ...;
```

- Can be performed by the Map stage:
 - Return computed key/value for those items that match

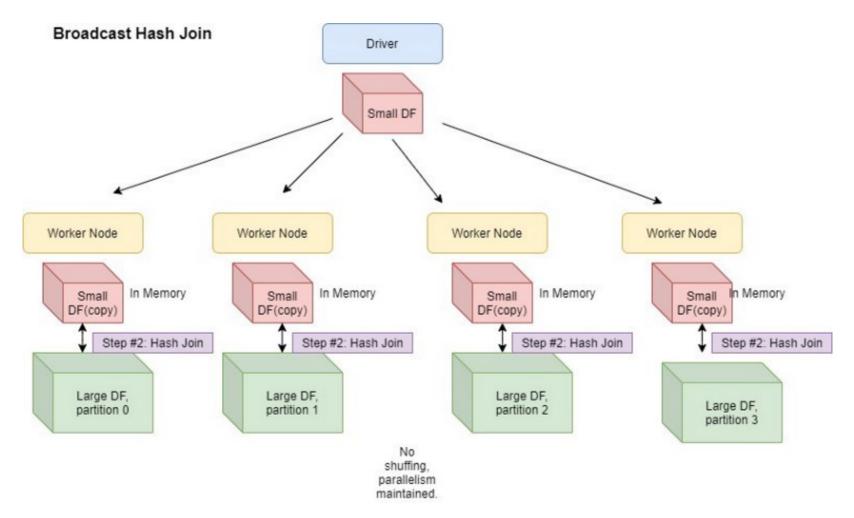
Grouped aggregates

- Example:
 - select x,sum(y) from ... group by x;
- In the Map stage:
 - Return Key=x and Value=y
- Optionally use a Combiner stage
- In the Reduce stage:
 - Iterate over values and return Key,sum(Values)

Map/Broadcast join

- Example:
 - select a.y,b.z from A join B on a.x=b.x;
- Assumptions:
 - One data set (B) is small
 - No assumption on number of occurrences
- Before Map, cache B in all workers
- In the Map stage:
 - Lookup a.x in B, getting b.z
 - Return a.y and b.z

Map/Broadcast join



Shuffle join

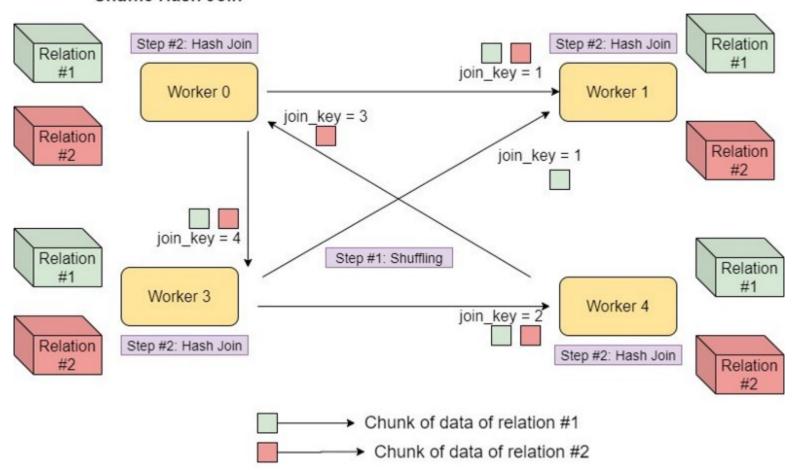
Example:

select a.y,b.z from A join B on a.x=b.x;

- Assumptions:
 - Both input data sets are large
 - Small number of ocurrences of each key
- In the Map stage:
 - For A: Return Key=x and Value=(LEFT,y)
 - For B: Return Key=x and Value=(RIGHT,z)
- In the Reduce stage:
 - Collect all (LEFT,...) and (RIGHT,...) pairs
 - Return all combinations

Shuffle

Shuffle Hash Join



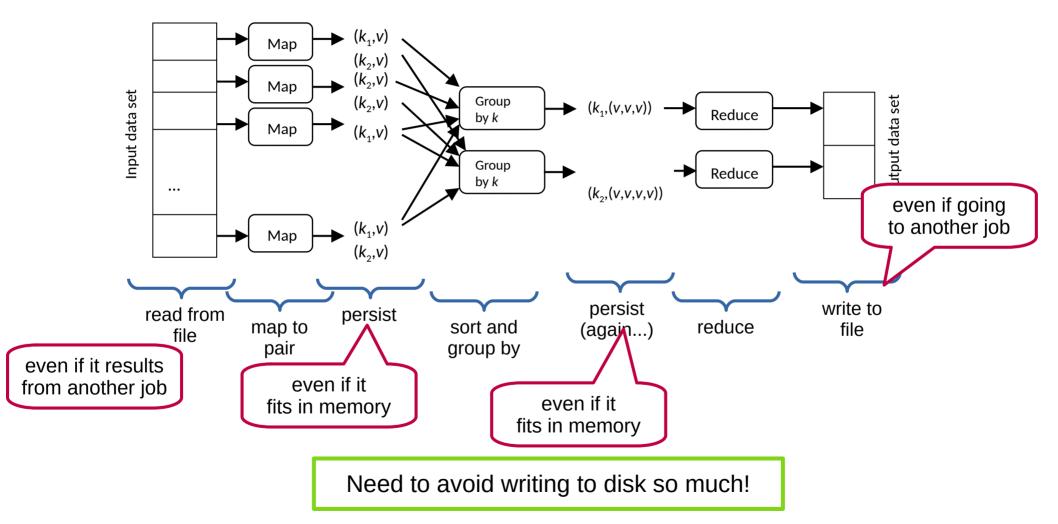
Sort

- Example:
 - select x,y from ... order by y;
- In the Map stage:
 - Return Key=y and Value=x
- Use one identity reducer task

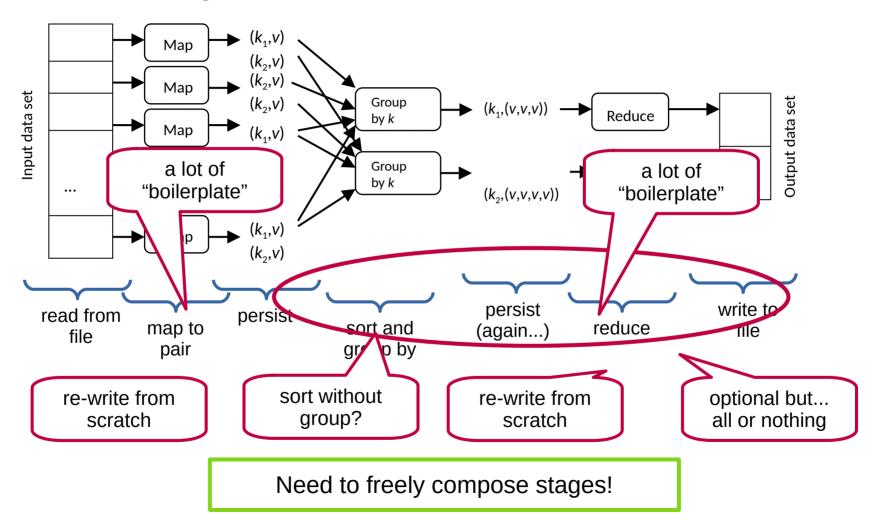
Chaining

- Multiple MapReduce jobs can be chained to compose operations
- This is necessary when sorting and grouping need to be done on multiple criteria
 - e.g., join on x, group by y

MR: Efficiency limitations



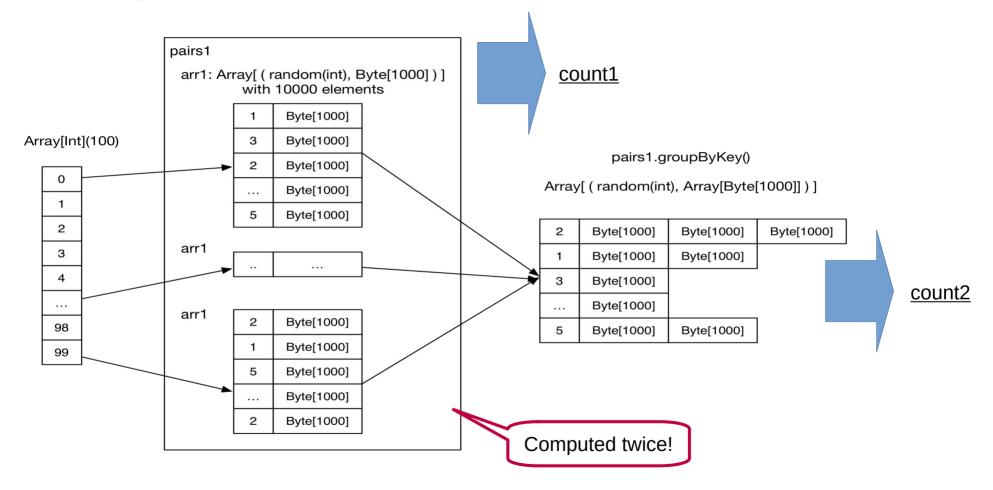
MR: Usability limitations



Distributed dataflow

- Generalized MapReduce:
 - Map, shuffle, reduce, and persistence stages
 - Can be arbitrarily composed
- Efficiency improved with:
 - Caching
 - Query optimization and code generation

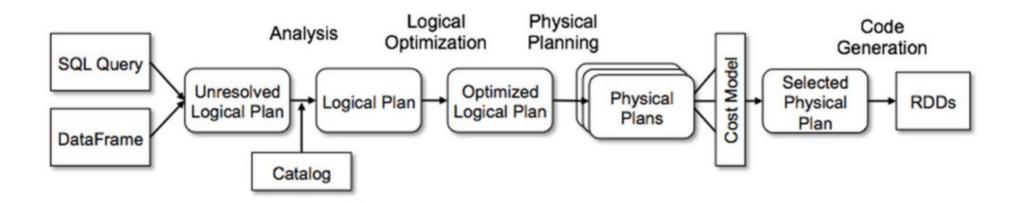
```
public class GroupByTest {
   public static void main(String[] args) throws Exception {
        int numMappers = 100;
        int numKVPairs = 10000:
        int valSize = 1000:
        int numReducers = 36;
        SparkConf conf = new SparkConf().setMaster("local").setAppName("GroupBy Test");
        JavaSparkContext sc = new JavaSparkContext(conf);
        List<Integer> data = IntStream.range(0, numMappers).boxed().collect(Collectors.toList());
        JavaPairRDD<Integer, byte[]> pairs1 = sc.parallelize(data, numMappers)
                .flatMapToPair(p -> {
                    Random ranGen = new Random();
                    Stream<Tuple2<Integer, byte[]>> arr1 = IntStream.range(0, numKVPairs).mapToObj(i -> {
                        byte[] byteArr = new byte[valSize];
                        ranGen.nextBytes(byteArr);
                        return new Tuple2<>(ranGen.nextInt(), byteArr);
                    });
                    return arr1.iterator();
                });
        long count1 = pairs1.count();
        long count2 = pairs1.groupByKey(numReducers).count();
        System.out.println(count1+" "+count2);
```

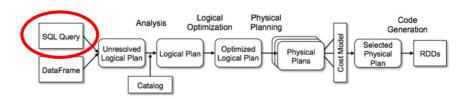


Caching example

```
public class GroupByTest {
   public static void main(String[] args) throws Exception {
       int numMappers = 100;
       int numKVPairs = 10000:
       int valSize = 1000:
       int numReducers = 36;
       SparkConf conf = new SparkConf().setMaster("local").setAppName("GroupBy Test");
       JavaSparkContext sc = new JavaSparkContext(conf);
       List<Integer> data = IntStream.range(0, numMappers).boxed().collect(Collectors.toList());
       JavaPairRDD<Integer, byte[]> pairs1 = sc.parallelize(data, numMappers)
                .flatMapToPair(p -> {
                    Random ranGen = new Random();
                    Stream<Tuple2<Integer, byte[]>> arr1 = IntStream.range(0, numKVPairs).mapToObj(i -> {
                        byte[] byteArr = new byte[valSize];
                        ranGen.nextBytes(byteArr);
                        return new Tuple2<>(ranGen.nextInt(), byteArr);
                    });
                    return arr1.iterator();
                  .cache();
                                                        Store interim
                                                    result for both jobs
       long count1 = pairs1.count();
       long count2 = pairs1.groupByKey(numReducers).count();
       System.out.println(count1+" "+count2);
```

Query processing





Consider the following code:

```
Dataset<Row> ds = spark.sql("select town from " +
        "post_code natural join invoice " +
        "natural join item where desc='stuff'");
ds.show();
ds.explain(true);
                     Shows how the query is
                processed in the Spark SQL pipeline
```

Parsed logical plan:

```
Analysis Logical Planing Code Generation

SQL Query

Unresolved Logical Plan

Optimized Optimized Plans

Optimized Plans

Physical Plan

Physical Plans

RDDs

RDDs
```

Analyzed logical plan:

```
Analysis Logical Physical Planning Code Generation

SQL Query

Unresolve Logical Plan Optimized Logical Plan Physical Plans

Catalog

Code Generation

Selected Physical Plan Physical Plan Physical Plan Plans
```

Optimized logical plan:

```
Analysis Logical Physical Planning Generation

SQL Query

Unresolved Logical Plan

Optimized Logical Plan

Physical Plans

Optimized Plans

Catalog
```

Using ds.explain("cost") shows additional statistics

Code generation

- Converts a physical plan into actual code that can be executed
- Simple code generation:
 - Produces sequence of generic RDD transformations
- Whole stage code generation:
 - Produces custom RDD transformation combining all operations in each stage
 - Resulting code is very different from manually written code...

Physical plan:

```
Compiles to a single Map step!
  *(3) Project [town#59]
  +- *(3) BroadcastHashJoin [item#17], [item#38], Inner, BuildRig
     :- *(3) Project [town#59, item#17]
        +- *(3) BroadcastHashJoin [code#58], [code#18], Inner, Bu
           :- BroadcastExchange HashedRelationBroadcastMode(List(
              +- *(1) Filter isnotnull(code#58)
                 +- FileScan csv [code#58,town#59] Batched: false
              +- FileScan csv [item#17,code#18] Batched: false, D
     +- BroadcastExchange HashedRelationBroadcastMode(List(input[
        +- *(2) Project [item#38]
           +- *(2) Filter ((isnotnull(desc#39) AND (desc#39 = stu
              +- FileScan csv [item#38,desc#39] Batched: false, D
                                                                     map Partitions Internal

    Using ds.explain("codegen") shows final Java code
```

٦S

Code

Summary

- Distributed-parallel processing is applicable for extremely large datasets
- SQL compilation is extended to use distributed operators:
 - Data exchange as a new dimension for optimization