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Roadmap
● What physical operators exist for each logical operation?

● How are physical operators implemented and 
composed?

● How is the best plan found?
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Optimization
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Roadmap
● How to estimate the cost of a plan?

● How to find alternative plans?
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Cost estimation
● Tradeoff beween:

– Actually executing the query and measuring what resources it 
consumes and how long it takes to execute

vs
– Estimate that can be computed quickly

vs
– Considering that all queries have the same cost

● We don’t want to know what is the actual cost
● We want to know which alternative costs less

– Use a model that monotonously approximates real cost
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Example: Simple sequential scan
● Assumption of main cost factor:

– Number of disk block I/O operations
● Cost model as a simple equation:

– C = C0 + C1 Nblocks
Known from the size

of the file

How to find them?
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Example: Hash Join
● CPU cost:

– Building hash table from inner table ~ 
Nr input rows

– Checking each row in the outer table ~ 
Nl input rows

– Creating the resulting Nm rows
● Very high cost if not enough memory 

to hold Ni rows in the hash table

⋈
NrNl

Nm

How to estimate?

Icons by Flaticon.com.
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Coefficients
● Cost coefficients depend on the actual hardware, 

software, and even workloads

● Can be estimated by profiling simple workloads
● Can be tuned by the DBA
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Cardinality - Selection
● Assumption of uniform distribution
● Know #distinct

– Expected copies of each tuple:
● #rows / #distinct
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Cardinality - Selection
● Real data are usually not uniformly distributed:

– 80/20 rule
– Power law

● Know most popular and #occurrences
● Compute estimated #occurrences of others as uniformly 

distributed

values
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Image source: Wikipedia
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Cardinality - Selection
● Data often have complex 

multimodal distributions
● Know histogram:

– % of occurrences in each interval
or

– interval for fixed % of occurrences
● Compute #occurrences as 

uniformly distributed within each 
interval x >= 70 AND x <83

Image source: Wikipedia
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Cardinality - Conjunction
● Filter conditions are often the conjunction of conditions 

on different columns
● Statistics on multiple columns are expensive:

– Multidimensional
– Many possible combinations

● Assume independently distributed values in different 
columns:
– selectivity = #selected / #total rows
– selectivity(a b) = selectivity(a) * selectivity(b)∧

● Idem for disjunction



U. Minho Distributed Data Processing Environments 16

Cardinality - Join
● Cardinality for cross-product of A and B:

– #rows from A × #rows from A
● Cardinality for join, first attempt:

– Align buckets of histograms for A and B
– Estimate the cardinality of each matching bucket as a cross-

product:
● Not good, as there are non-matching values

– e.g. A has even numbers, B has odd numbers  no match!→
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Cardinality - Join
● Assume that one relation A has all values (containment)
● Cardinality for join, second attempt:

– Align buckets of histograms for A and B
– Estimate the cardinality of each matching bucket:

● Each of #rows in B matches (#rows in A / #distinct in A)
– Because A has all the values

● Estimate as #rows B × #rows in A / #distinct in A
– Generalize for the case where B has all values:

● #rows in A × #rows in B / max(#distinct in A, #distinct in B)
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Summary
● Tradeoff between complexity (data and computation) 

and accuracy
● Many other techniques:

– More statistics
– Heuristics
– Hinting
– Sampling of query
– Machine learning
– …
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Roadmap
● How to estimate the cost of a plan?

● How to find alternative plans?
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Search space
● The set of possible alternative plans (search space) is 

determined by a set of rules
– Equivalent relational algebra expressions
– Physical implementation of single operators or plan 

fragments
– Enforcing physical properties

● The set of rules is the main configuration point for 
extensible query optimizers
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A simple rule for Join order
● Inner join is 

commutative and 
associative

(... x) y⋈ ⋈  =
... (x y) =⋈ ⋈
... (y x) =⋈ ⋈
(... y) x⋈ ⋈

● This allows exploring 
all left-deep trees
– n! permutations

● Does not consider 
bushy trees

⋈

⋈

…

…

y

x

⋈

⋈

…

…

x

y
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Join commutativity and associativity
● Separately considering 

commutativity and 
associativity rules

● Allows exploring all 
possible join 
expressions:
– Including bushy trees

⋈

⋈

…

y

x

⋈

⋈
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x y
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Selection push-down
● Possible when the predicate 

involves only one of the 
branches
– Otherwise, merge it in the join 

condition!
● If the predicate is highly 

selective, reduces the amount 
of work in join

● Selectivity is the key criteria for 
join ordering!!!

 q(x,y)⋈

 p(x)𝜎

x y

 q(x,y)⋈

x

y p(x)𝜎



U. Minho Distributed Data Processing Environments 25

Selection pull-up
● Always possible, but…
● Does it ever make sense?!?!

 q(x,y)⋈

 p(x)𝜎

x y

 q(x,y)⋈

x

y p(x)𝜎
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Selection pull-up

● Assume that q is highly selective
● Assume that p is very costly to 

execute:
– e.g. call into an LLM to check if 

“sentiment” on a textual column is 
“positive”

● Can be useful! 

 q(x,y)⋈

 p(x)𝜎

x y

 q(x,y)⋈

x

y p(x)𝜎
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Grouping and aggregation implementation

● Two-pass algorithms for 
grouping (and join) depend on 
sorted input
– Expressed as a required 

“physical property”
● Sorting is preserved

 [a] f(b)𝛾
HA([a],f(b))

(sorted a)

MA([a]c,f(b))

(sorted a)

required
physical property
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Search space
● Rule sets that produce a larger search space:

– More likely to contain the optimum  faster execution→
– More work to evaluate all alternatives  faster planning→

● Query execution is the sum of planning and execution
● Best overall performance:

– Depends on workload
– Found as a compromise of planning and execution
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Search algorithm

● Repeated application of rules can result in an infinite loop
● Solution:

– Remember all plans to check for repetitions

⋈

x y

⋈

y x

⋈

x y

...
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Search algorithm

● The cost of a sub-plan of an alternative being explored 
may be greater that the total cost of the best know 
alternative

● Solution:
– Prune search based on current best estimate

c=110

c=100
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Search algorithm
● Some sequences of rule applications tend to converge 

faster to the optimum plan
– The sooner that we get a “good” estimate, the more 

alternatives that can be pruned
● Solution:

– Order available rules by their heuristic promise
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Conclusions
● The set of possible alternative execution plans for 

common analytical operations is extremely large
● There is no greedy algorithm that can find the optimum
● The optimum depends on current data, defeating manual 

optimization efforts

● The best option is to use a declarative data processing 
system such as a SQL query engine
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