
Distributed Data Processing Environments

José Orlando Pereira

Departamento de Informática
Universidade do Minho

U. Minho Distributed Data Processing Environments 2

Query processing

“select a from X natural join Y where c = 3;”

a b

1 aaa

2 bbb

3 ccc

b c

aaa 1

bbb 2

bbb 3

ccc 3

ddd 4

a

2

3

X Y

U. Minho Distributed Data Processing Environments 3

Relational algebra
● Relation: Set of tuples
● Basic operations:

– Set operations
– SELECT … WHERE condition Selection (→ σ)
– SELECT columns FROM … Projection (π) →
– SELECT … FROM x JOIN Y Inner join ()→ ⋈

● Other operations:
– Grouping and aggregation ()𝛾
– Outer joins (, ,)⟕ ⟖ ⟗

Most operators in SQL systems
work on multi-sets / “bags”!

U. Minho Distributed Data Processing Environments 4

Compilation

“select a from X natural join Y where c = 3;”SQL

πa(σc=3(X Y))⋈Relational
algebra

U. Minho Distributed Data Processing Environments 5

Compilation

“select a from X natural join Y where c = 3;”

projection on a

natural join

select c=3X

Y

SQL

Relational
algebra

U. Minho Distributed Data Processing Environments 6

Roadmap
● How are physical operators implemented and

composed?

● What physical operators exist for each logical operation

● Later: How are physical operators selected?

U. Minho Distributed Data Processing Environments 7

Execution with materialization b

bbb

ccc

b c

bbb 3

ccc 3

b c

aaa 1

bbb 2

bbb 3

ccc 3

ddd 4

projection on b

select c=3

Y

● Bottom up:
– Start from the leafs

(stored tables)

U. Minho Distributed Data Processing Environments 8

Execution with materialization b

bbb

ccc

b c

bbb 3

ccc 3

b c

aaa 1

bbb 2

bbb 3

ccc 3

ddd 4

projection on b

select c=3

Y

● Bottom up:
– Start from the leafs

(stored tables)
● Compute intermediate

results

U. Minho Distributed Data Processing Environments 9

Execution with materialization b

bbb

ccc

b c

bbb 3

ccc 3

b c

aaa 1

bbb 2

bbb 3

ccc 3

ddd 4

projection on b

select c=3

Y

● Bottom up:
– Start from the leafs

(stored tables)
● Compute intermediate

results
● Until the final result can

be delivered to the user

U. Minho Distributed Data Processing Environments 10

Consequences
● Efficient use of current CPU architectures when

combined with columnar layouts
– Vectorization

● Large intermediate results that need to be stored
– Might not fit completely in memory

● Potentially wasted work
– e.g. SELECT … LIMIT 10

U. Minho Distributed Data Processing Environments 11

Execution with iteration b

bbb

ccc

b c

bbb 3

ccc 3

b c

aaa 1

bbb 2

bbb 3

ccc 3

ddd 4

projection on b

select c=3

Y

● Top down:
– What is needed for a row

in the result?
– Recursively visit each

intermediate result
– Eventually start reading

the data

U. Minho Distributed Data Processing Environments 12

Execution with iteration b

bbb

ccc

b c

bbb 3

ccc 3

b c

aaa 1

bbb 2

bbb 3

ccc 3

ddd 4

projection on b

select c=3

Y

● Top down:
– What is needed for a row

in the result?
– Recursively visit each

intermediate result
– Eventually start reading

the data
● The intermediate result is

computed for each row

U. Minho Distributed Data Processing Environments 13

Execution with iteration b

bbb

ccc

b c

bbb 3

ccc 3

b c

aaa 1

bbb 2

bbb 3

ccc 3

ddd 4

projection on b

select c=3

Y

● Top down:
– What is needed for a row

in the result?
– Recursively visit each

intermediate result
– Eventually start reading

the data
● The intermediate result is

computed for each row

U. Minho Distributed Data Processing Environments 14

Execution with iteration b

bbb

ccc

b c

bbb 3

ccc 3

b c

aaa 1

bbb 2

bbb 3

ccc 3

ddd 4

projection on b

select c=3

Y

● Top down:
– What is needed for a row

in the result?
– Recursively visit each

intermediate result
– Eventually start reading

the data
● The intermediate result is

computed for each row

U. Minho Distributed Data Processing Environments 15

Execution with iteration b

bbb

ccc

b c

bbb 3

ccc 3

b c

aaa 1

bbb 2

bbb 3

ccc 3

ddd 4

projection on b

select c=3

Y

● Top down:
– What is needed for a row

in the result?
– Recursively visit each

intermediate result
– Eventually start reading

the data
● The intermediate result is

computed for each row

U. Minho Distributed Data Processing Environments 16

Consequences of iteration
● Minimizes memory needed for large intermediate results
● Minimizes work with LIMIT clause
● Not applicable to operators that must observe all rows

before knowing what is the first to output
– ORDER BY
– GROUP BY on an unsorted input
– …

U. Minho Distributed Data Processing Environments 17

Consequences of iteration
● Close to worst case scenario for data movement and

parallelism! 😱
– Poor locality Impacts caching / NUMA→
– Short code segments interleaved with dereferencing though

virtual pointers Processor pipeline stalls→
– Computation on one value at a time No SIMD→

● Severely impacts analytical workloads!

U. Minho Distributed Data Processing Environments 18

Hybrid solution: Chunked data

b c

aaa 1

bbb 2

bbb 3

ccc 3

ddd 4

b c

aaa 1

bbb 2

bbb 3

ccc 3

ddd 4

● Iterate over “chunks”:
– Records Records of arrays→

● Exploit columnar layout: SIMD
● Can be combined with operator fusion

U. Minho Distributed Data Processing Environments 19

Roadmap
● How are physical operators implemented and

composed?

● What physical operators exist for each logical operation

● Later: How are physical operators selected?

U. Minho Distributed Data Processing Environments 20

One-pass, record-at-a-time
● Operators:

– Sequential scan
– Selection
– Projection

● Memory requirements:
– No more than one record required
– Always possible

U. Minho Distributed Data Processing Environments 21

One-pass, full relation, unary
● Duplicate elimination:

– Cache unique records
– “select distinct * from X;”

● Grouping and aggregation:
– Cache groups
– “select count(*) from X group by b;”

● Sorting:
– Cache all records and sort in memory
– “select * from X order by b;”

U. Minho Distributed Data Processing Environments 22

Nested-loop join (NLJ)

a b

1 aaa

2 bbb

3 ccc

b c

bbb 3

ccc 3

a b

1 aaa

2 bbb

3 ccc

b c

bbb 3

ccc 3

b c

bbb 3

ccc 3

b c

bbb 3

ccc 3

...

U. Minho Distributed Data Processing Environments 23

One-pass, full relation, binary
● Avoid reading the inner relation multiple times

– Read and cache the smallest relation
– Organize for fast look-up (e.g. hash)
– Read and operate on each record from the largest relation

● Also applicable to union, difference, intersection, product

U. Minho Distributed Data Processing Environments 24

One-pass, full relation, binary

a b c

2 bbb 3

3 ccc 3

b c

bbb 3

ccc 3

a b

1 aaa

2 bbb

3 ccc

● Load smaller table into memory and add search
structure:

Icons by Flaticon.com.

U. Minho Distributed Data Processing Environments 25

One-pass, full relation, binary

a b c

2 bbb 3

3 ccc 3

b c

bbb 3

ccc 3

a b

1 aaa

2 bbb

3 ccc

● Test each record from the largest relation:

 Not found

Icons by Flaticon.com.

U. Minho Distributed Data Processing Environments 26

One-pass, full relation, binary

a b c

2 bbb 3

3 ccc 3

b c

bbb 3

ccc 3

a b

1 aaa

2 bbb

3 ccc

● Test each record from the largest relation:

Icons by Flaticon.com.

U. Minho Distributed Data Processing Environments 27

Nested-loop join (NLJ)
● Memory requirements:

– One record from each relation
● Operations:

– If outer loop has N records
– Reads inner relation N times

U. Minho Distributed Data Processing Environments 28

Large relations and sorting
● Algorithms using sorted data are more efficient (e.g. than

nested loops)
● How to sort data that does not fit in memory?

U. Minho Distributed Data Processing Environments 29

Merge-sort
● Split data in chunks that fit in memory:

a b

8 ...

4

7

2

3

5

6

1

a b

8 ...

4

7

2

a b

3 ...

5

6

1

U. Minho Distributed Data Processing Environments 30

Merge-sort
● Load and sort each of them

a b

8 ...

4

7

2

a b

3 ...

5

6

1

a b

2 ...

4

7

8

U. Minho Distributed Data Processing Environments 31

Merge-sort
● Load and sort each of them

a b

8 ...

4

7

2

a b

3 ...

5

6

1

a b

2 ...

4

7

8

a b

1 ...

3

5

6

U. Minho Distributed Data Processing Environments 32

Merge-sort
● Select the next element with lowest key:

a b

2 ...

4

7

8

a b

1 ...

3

5

6

1

U. Minho Distributed Data Processing Environments 33

Merge-sort
● Select the next element with lowest key:

a b

2 ...

4

7

8

a b

1 ...

3

5

6

1

2

U. Minho Distributed Data Processing Environments 34

Merge-sort
● Select the next element with lowest key:

a b

2 ...

4

7

8

a b

1 ...

3

5

6

1

2

3

...

U. Minho Distributed Data Processing Environments 35

Two-pass, full relation, unary
● First pass is sorting
● Duplicate elimination:

– Cache last record
– “select distinct * from X;”

● Grouping and aggregation:
– Cache last group
– “select count(*) from X group by b;”

U. Minho Distributed Data Processing Environments 36

Example

● Assumptions:
– ~50%, y=1
– ~50%, y=2
– a few, y=3

● Query:
– select count(*) from X

where y = 1;
● Not efficient for frequent

queries

z y

d 1

c 2

g 1

k 2

h 3

a 1

b 1

f 2

d 2

k 1

j 2

l 1

... ...

U. Minho Distributed Data Processing Environments 37

Example

● Keep results cached when original table is updated:

● Use with:
– select * from counts where y = 1;

y count

1 773647263

2 765732332

3 1

U. Minho Distributed Data Processing Environments 38

Materialized views

scan X

count(*) group by y

create materialized view V as select y, count(*) from X

View
definition

materialize V

V

selection y = 1

select * from V where y = 1

View
usage Plan executed

U. Minho Distributed Data Processing Environments 39

Summary
● A SQL system does:

– Transform the statement to relational algebra
– Selects physical operators
– Executes the resulting program

● Different execution strategies:
– Iteration is not good for analytical workloads

● Different physical operators:
– Each with performance tradeoffs

● Materialization is key for analytical performance

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

