Distributed Data Processing Environments

Joseé Orlando Pereira

Departamento de Informatica
Universidade do Minho

-l'l'\

Query processing

3 b

\
“select a from X natural join Y where c = 3;”

/

X
1 aaa
2 bbb
3 CcCC

U. Minho Distributed Data Processing Environments

Relational algebra

* Relation: Set of tuples
Most operators in SQL systems
o BaS|C OperatlonS work on multi-sets / “bags”!

- Set operations

- SELECT ... WHERE condition - Selection (o)
- SELECT columns FROM ... = Projection ()
- SELECT ... FROM x JOIN'Y - Inner join (X)

* Other operations:
- Grouping and aggregation (y)

- Outer joins (34, p<t, >)

U. Minho Distributed Data Processing Environments

Compilation

SQL { “select a from X natural join Y where ¢ = 3;”

Relational

algebra Tla(0c-3(X > Y))

U. Minho Distributed Data Processing Environments

Compilation

SQL { “select a from X natural join Y where ¢ = 3;”

(projecti})n on a
Relational natural join
algebra T
X select c=3
f
Y
\

U. Minho Distributed Data Processing Environments

Roadmap

 How are physical operators implemented and
composed?

* What physical operators exist for each logical operation

» Later: How are physical operators selected?

U. Minho Distributed Data Processing Environments

Execution with materialization P

* Bottom up: cee
- Start from the leafs projection on b
(stored tables)
bbb 3
ccc 3
select c=3
aaa 1
bbb 2 \
bbb 3 Y
CcccC 3
ddd 4

U. Minho Distributed Data Processing Environments

Execution with materialization P

* Bottom up: cee
projectionon b

- Start from the leafs
(stored tables)

 Compute intermediate ::: :
results
select c=3

aaa 1
bbb 2 \
bbb 3 Y
ccc 3
ddd 4

U. Minho Distributed Data Processing Environments

Execution with materialization P

* Bottom up: cee
projectionon b

- Start from the leafs
(stored tables)

 Compute intermediate ::: °
results
select c=3
e Until the final result can
be delivered to the user aaa 1
bbb 2 \
bbb 3 Y
ccc 3
ddd 4

U. Minho Distributed Data Processing Environments

Consequences

o Efficient use of current CPU architectures when
combined with columnar layouts

— Vectorization

* Large intermediate results that need to be stored
- Might not fit completely in memory

* Potentially wasted work
- e.g. SELECT ... LIMIT 10

mone?aD

U. Minho Distributed Data Processing Environments 10

Execution with iteration b

bbb
 Top down: ccc
- What is needed for a row projection on b
in the result?
: - bbb 3
- Recursively visit each o
intermediate result
- Eventually start reading select c3
the data
bbb 2
bbb 3 Y
cccC 3
ddd 4

U. Minho Distributed Data Processing Environments

Execution with iteration b

bbb
 Top down: ccc
- What is needed for a row projection on b
in the result?
. . bbb 3
- Recursively visit each oo
intermediate result
select c=3

- Eventually start reading

the data
* The intermediate result is
computed for each row bbb 3 Y
ccc 3
ddd 4

U. Minho Distributed Data Processing Environments

12

Execution with iteration b

bbb
 Top down: ccc
- What is needed for a row projection on b
in the result?
: . bbb 3
- Recursively visit each oo
intermediate result
- Eventually start reading select c3
the data
aaa 1
 The intermediate result is bbb 2|
computed for each row
ccc 3
ddd 4

U. Minho Distributed Data Processing Environments

Execution with iteration b

bbb
 Top down: ccc
- What is needed for a row projection on b

in the result?

- Recursively visit each
ccc 3

intermediate result |
- Eventually start reading select c3
the data
aaa 1
 The intermediate result is bbb 2|
computed for each row
ccc 3
ddd 4

U. Minho Distributed Data Processing Environments 14

Execution with iteration

 Top down: ccc

- What is needed for a row projection on b
in the result?

- Recursively visit each

. . CCC 3
intermediate result

: lect c=3
- Eventually start reading i

the data
aaa 1
* The intermediate result is bbb 2|
computed for each row
ccc 3
ddd 4

U. Minho Distributed Data Processing Environments 15

Consequences of iteration

* Minimizes memory needed for large intermediate results
* Minimizes work with LIMIT clause

* Not applicable to operators that must observe all rows
before knowing what is the first to output
- ORDER BY

— GROUP BY on an unsorted input

PostgreSQL

U. Minho Distributed Data Processing Environments 16

Consequences of iteration

 Close to worst case scenario for data movement and
parallelism!
— Poor locality = Impacts caching / NUMA

- Short code segments interleaved with dereferencing though
virtual pointers - Processor pipeline stalls

— Computation on one value at a time - No SIMD

« Severely impacts analytical workloads!

U. Minho Distributed Data Processing Environments

17

Hybrid solution: Chunked data Q

* [terate over “chunks”: DuckDB

— Records - Records of arrays
* Exploit columnar layout: SIMD
* Can be combined with operator fusion

aaa 1 aaa 1
bbb 2 bbb 2
obb 3 bbb 3
CCC 3 —
ddd 4 ddd 4

U. Minho Distributed Data Processing Environments 18

Roadmap

 How are physical operators implemented and
composed?

* What physical operators exist for each logical operation

» Later: How are physical operators selected?

U. Minho Distributed Data Processing Environments

19

One-pass, record-at-a-time

e Operators:
— Sequential scan
— Selection
- Projection
 Memory requirements:
- No more than one record required
- Always possible

U. Minho Distributed Data Processing Environments

20

One-pass, full relation, unary

* Duplicate elimination:
— Cache unique records
- “select distinct * from X;”
« Grouping and aggregation:
— Cache groups
- “select count(*) from X group by b;”
e Sorting:
— Cache all records and sort in memory
- “select * from X order by b;"

U. Minho Distributed Data Processing Environments

21

Nested-loop join (NLJ)

——

—

U. Minho Distributed Data Prddéssing Environments

One-pass, full relation, binary

* Avoid reading the inner relation multiple times
— Read and cache the smallest relation
- Organize for fast look-up (e.g. hash)
- Read and operate on each record from the largest relation

* Also applicable to union, difference, intersection, product

U. Minho Distributed Data Processing Environments 23

One-pass, full relation, binary

* Load smaller table into memory and add search

structure:

2

3

CCC

bbb

CCC

1 aaa

2 bbb

3 ccc
U. Minho

Distributed Data Processing Environments

Icons by Flaticon.com.

24

One-pass, full relation, binary

* Test each record from the largest relation:

bbb

Not found

CCC

2 bbb
3 CCC
U. Minho

Distributed Data Processing Environments

Icons by Flaticon.com.

25

One-pass, full relation, binary

* Test each record from the largest relation:

U. Minho Distributed Data Processing Environments 26
Icons by Flaticon.com.

Nested-loop join (NLJ)

 Memory requirements:
— One record from each relation

* Operations:
— |If outer loop has N records
— Reads inner relation N times

U. Minho Distributed Data Processing Environments

27

Large relations and sorting

 Algorithms using sorted data are more efficient (e.g. than
nested loops)

* How to sort data that does not fit in memory?

U. Minho Distributed Data Processing Environments 28

Merge-sort

 Split data in chunks that fit in memory:

U. Minho

/

Hmmwmxlhool

Distributed Data Processing Environments 29

Merge-sort

 Load and sort each of them

00\1.l>|\>|

Hcnmwl N\;Aml

U. Minho Distributed Data Processing Environments

30

Merge-sort

 Load and sort each of them

a b a b
8 2

4 > 4

7 7

2 8

a a b
3 1

5 3

6 — —> 5

1 6

U. Minho Distributed Data Processing Environments

31

Merge-sort

« Select the next element with lowest key:

U. Minho Distributed Data Processing Environments

32

Merge-sort

« Select the next element with lowest key:

\-i

7

8
3
5
6

U. Minho Distributed Data Processing Environments

33

Merge-sort

« Select the next element with lowest key:

o

U. Minho Distributed Data Processing Environments

34

Two-pass, full relation, unary

* First pass is sorting

* Duplicate elimination:
— Cache last record
- “select distinct * from X;”
* Grouping and aggregation:
— Cache last group
- “select count(*) from X group by b;”

U. Minho Distributed Data Processing Environments

35

Example

* Assumptions:
- ~50%, y=T
- ~50%, y=2
- afew, y=3

* Query:

- select count(*) from X

wherey = 1;

* Not efficient for frequent

gueries

U. Minho

I

A Q| T™TTITI Y TS]STKRIQ O a

— |

R N ERINN R R OWNR N RS

Distributed Data Processing Environments

36

Example

* Keep results cached when original table is updated:

1 773647263
2 765732332
3 1

* Use with:
- select * from counts wherey = 1;

U. Minho Distributed Data Processing Environments

Materialized views

(
View
definition <
\
(
View
usage
\.
U. Minho

materialize V

A
count(*) group by y

"

scan X

create materialized view V as select y, count(*) from X

select * fromV wherey =1

\
selectiony =1
4 > Plan executed
V
o

Distributed Data Processing Environments 38

Summary

* A SQL system does:
— Transform the statement to relational algebra
— Selects physical operators
— Executes the resulting program

* Different execution strategies:
— Iteration is not good for analytical workloads

* Different physical operators:
— Each with performance tradeoffs

* Materialization is key for analytical performance

U. Minho Distributed Data Processing Environments

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

