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Query processing

3 b

\
“select a from X natural join Y where c = 3;”

/

X
1 aaa
2 bbb
3 CcCC
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Relational algebra

* Relation: Set of tuples
Most operators in SQL systems
o BaS|C OperatlonS work on multi-sets / “bags”!

- Set operations

- SELECT ... WHERE condition - Selection (o)
- SELECT columns FROM ... = Projection ()
- SELECT ... FROM x JOIN'Y - Inner join (X)

* Other operations:
- Grouping and aggregation (y)

- Outer joins (34, p<t, >)

U. Minho Distributed Data Processing Environments



Compilation

SQL { “select a from X natural join Y where ¢ = 3;”

Relational

algebra Tla(0c-3(X > Y))
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Compilation

SQL { “select a from X natural join Y where ¢ = 3;”

( projecti})n on a
Relational natural join
algebra T
X select c=3
f
Y
\
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Roadmap

 How are physical operators implemented and
composed?

* What physical operators exist for each logical operation

» Later: How are physical operators selected?
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Execution with materialization P

* Bottom up: cee
- Start from the leafs projection on b
(stored tables)
bbb 3
ccc 3
select c=3
aaa 1
bbb 2 \
bbb 3 Y
CcccC 3
ddd 4
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Execution with materialization P

* Bottom up: cee
projectionon b

- Start from the leafs
(stored tables)

 Compute intermediate ::: :
results
select c=3

aaa 1
bbb 2 \
bbb 3 Y
ccc 3
ddd 4

U. Minho Distributed Data Processing Environments



Execution with materialization P

* Bottom up: cee
projectionon b

- Start from the leafs
(stored tables)

 Compute intermediate ::: °
results
select c=3
e Until the final result can
be delivered to the user aaa 1
bbb 2 \
bbb 3 Y
ccc 3
ddd 4

U. Minho Distributed Data Processing Environments



Consequences

o Efficient use of current CPU architectures when
combined with columnar layouts

— Vectorization

* Large intermediate results that need to be stored
- Might not fit completely in memory

* Potentially wasted work
- e.g. SELECT ... LIMIT 10

mone?aD
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Execution with iteration b

bbb
 Top down: ccc
- What is needed for a row projection on b
in the result?
: - bbb 3
- Recursively visit each o
intermediate result
- Eventually start reading select c3
the data
bbb 2
bbb 3 Y
cccC 3
ddd 4
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Execution with iteration b

bbb
 Top down: ccc
- What is needed for a row projection on b
in the result?
. . bbb 3
- Recursively visit each oo
intermediate result
select c=3

- Eventually start reading

the data
* The intermediate result is
computed for each row bbb 3 Y
ccc 3
ddd 4
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Execution with iteration b

bbb
 Top down: ccc
- What is needed for a row projection on b
in the result?
: . bbb 3
- Recursively visit each oo
intermediate result
- Eventually start reading select c3
the data
aaa 1
 The intermediate result is bbb 2|
computed for each row
ccc 3
ddd 4
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Execution with iteration b

bbb
 Top down: ccc
- What is needed for a row projection on b

in the result?

- Recursively visit each
ccc 3

intermediate result |
- Eventually start reading select c3
the data
aaa 1
 The intermediate result is bbb 2|
computed for each row
ccc 3
ddd 4
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Execution with iteration

 Top down: ccc

- What is needed for a row projection on b
in the result?

- Recursively visit each

. . CCC 3
intermediate result

: lect c=3
- Eventually start reading i

the data
aaa 1
* The intermediate result is bbb 2|
computed for each row
ccc 3
ddd 4
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Consequences of iteration

* Minimizes memory needed for large intermediate results
* Minimizes work with LIMIT clause

* Not applicable to operators that must observe all rows
before knowing what is the first to output
- ORDER BY

— GROUP BY on an unsorted input

PostgreSQL
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Consequences of iteration

 Close to worst case scenario for data movement and
parallelism!
— Poor locality = Impacts caching / NUMA

- Short code segments interleaved with dereferencing though
virtual pointers - Processor pipeline stalls

— Computation on one value at a time - No SIMD

« Severely impacts analytical workloads!
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Hybrid solution: Chunked data Q

* [terate over “chunks”: DuckDB

— Records - Records of arrays
* Exploit columnar layout: SIMD
* Can be combined with operator fusion

aaa 1 aaa 1
bbb 2 bbb 2
obb 3 bbb 3
CCC 3 —
ddd 4 ddd 4
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Roadmap

 How are physical operators implemented and
composed?

* What physical operators exist for each logical operation

» Later: How are physical operators selected?
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One-pass, record-at-a-time

e Operators:
— Sequential scan
— Selection
- Projection
 Memory requirements:
- No more than one record required
- Always possible
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One-pass, full relation, unary

* Duplicate elimination:
— Cache unique records
- “select distinct * from X;”
« Grouping and aggregation:
— Cache groups
- “select count(*) from X group by b;”
e Sorting:
— Cache all records and sort in memory
- “select * from X order by b;"
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Nested-loop join (NLJ)

——

—
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One-pass, full relation, binary

* Avoid reading the inner relation multiple times
— Read and cache the smallest relation
- Organize for fast look-up (e.g. hash)
- Read and operate on each record from the largest relation

* Also applicable to union, difference, intersection, product
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One-pass, full relation, binary

* Load smaller table into memory and add search

structure:

2

3

CCC

bbb

CCC

1 aaa

2 bbb

3 ccc
U. Minho

Distributed Data Processing Environments

Icons by Flaticon.com.
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One-pass, full relation, binary

* Test each record from the largest relation:

bbb

Not found

CCC

2 bbb
3 CCC
U. Minho
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Icons by Flaticon.com.
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One-pass, full relation, binary

* Test each record from the largest relation:
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Nested-loop join (NLJ)

 Memory requirements:
— One record from each relation

* Operations:
— |If outer loop has N records
— Reads inner relation N times
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Large relations and sorting

 Algorithms using sorted data are more efficient (e.g. than
nested loops)

* How to sort data that does not fit in memory?
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Merge-sort

 Split data in chunks that fit in memory:

U. Minho

/

Hmmwmxlhool
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Merge-sort

 Load and sort each of them

00\1.l>|\>|

Hcnmwl N\;Aml
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Merge-sort

 Load and sort each of them

a b a b
8 2

4 > 4

7 7

2 8

a a b
3 1

5 3

6 — —> 5

1 6
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Merge-sort

« Select the next element with lowest key:
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Merge-sort

« Select the next element with lowest key:

\-i

7

8
3
5
6
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Merge-sort

« Select the next element with lowest key:

o
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Two-pass, full relation, unary

* First pass is sorting

* Duplicate elimination:
— Cache last record
- “select distinct * from X;”
* Grouping and aggregation:
— Cache last group
- “select count(*) from X group by b;”
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Example

* Assumptions:
- ~50%, y=T
- ~50%, y=2
- afew, y=3

* Query:

- select count(*) from X

wherey = 1;

* Not efficient for frequent

gueries

U. Minho
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Example

* Keep results cached when original table is updated:

1 773647263
2 765732332
3 1

* Use with:
- select * from counts wherey = 1;
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Materialized views

(
View
definition <
\
(
View
usage
\.
U. Minho

materialize V

A
count(*) group by y

"

scan X

create materialized view V as select y, count(*) from X

select * fromV wherey =1

\
selectiony =1
4 > Plan executed
V
o
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Summary

* A SQL system does:
— Transform the statement to relational algebra
— Selects physical operators
— Executes the resulting program

* Different execution strategies:
— Iteration is not good for analytical workloads

* Different physical operators:
— Each with performance tradeoffs

* Materialization is key for analytical performance
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