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Query processing

“select a from X natural join Y where c = 3;”
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Relational algebra
● Relation: Set of tuples
● Basic operations:

– Set operations
– SELECT … WHERE condition  Selection (→ σ)
– SELECT columns FROM …  Projection (π) →
– SELECT … FROM x JOIN Y  Inner join ( )→ ⋈

● Other operations:
– Grouping and aggregation ( )𝛾
– Outer joins ( , , )⟕ ⟖ ⟗

Most operators in SQL systems
work on multi-sets / “bags”!
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Compilation

“select a from X natural join Y where c = 3;”SQL

πa(σc=3(X  Y))⋈Relational
algebra
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Compilation

“select a from X natural join Y where c = 3;”

projection on a

natural join

select c=3X

Y

SQL

Relational
algebra
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Roadmap
● How are physical operators implemented and 

composed?

● What physical operators exist for each logical operation

● Later: How are physical operators selected?
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Execution with materialization b
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projection on b

select c=3

Y

● Bottom up:
– Start from the leafs 

(stored tables)
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Execution with materialization b
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● Bottom up:
– Start from the leafs 

(stored tables)
● Compute intermediate 

results
● Until the final result can 

be delivered to the user
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Consequences
● Efficient use of current CPU architectures when 

combined with columnar layouts
– Vectorization

● Large intermediate results that need to be stored
– Might not fit completely in memory

● Potentially wasted work
– e.g. SELECT … LIMIT 10
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Execution with iteration b
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● Top down:
– What is needed for a row 

in the result?
– Recursively visit each 

intermediate result
– Eventually start reading 

the data
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Consequences of iteration
● Minimizes memory needed for large intermediate results
● Minimizes work with LIMIT clause
● Not applicable to operators that must observe all rows 

before knowing what is the first to output
– ORDER BY 
– GROUP BY on an unsorted input
– …
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Consequences of iteration
● Close to worst case scenario for data movement and 

parallelism! 😱
– Poor locality  Impacts caching / NUMA→
– Short code segments interleaved with dereferencing though 

virtual pointers  Processor pipeline stalls→
– Computation on one value at a time  No SIMD→

● Severely impacts analytical workloads!
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Hybrid solution: Chunked data

b c

aaa 1

bbb 2

bbb 3

ccc 3

ddd 4

b c

aaa 1

bbb 2

bbb 3

ccc 3

ddd 4

● Iterate over “chunks”:
– Records  Records of arrays→

● Exploit columnar layout: SIMD
● Can be combined with operator fusion
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Roadmap
● How are physical operators implemented and 

composed?

● What physical operators exist for each logical operation

● Later: How are physical operators selected?
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One-pass, record-at-a-time
● Operators:

– Sequential scan
– Selection
– Projection

● Memory requirements:
– No more than one record required
– Always possible
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One-pass, full relation, unary
● Duplicate elimination:

– Cache unique records
– “select distinct * from X;”

● Grouping and aggregation:
– Cache groups
– “select count(*) from X group by b;”

● Sorting:
– Cache all records and sort in memory
– “select * from X order by b;”
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Nested-loop join (NLJ)
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One-pass, full relation, binary
● Avoid reading the inner relation multiple times

– Read and cache the smallest relation
– Organize for fast look-up (e.g. hash)
– Read and operate on each record from the largest relation

● Also applicable to union, difference, intersection, product
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One-pass, full relation, binary

a b c
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● Load smaller table into memory and add search 
structure:

Icons by Flaticon.com.
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One-pass, full relation, binary
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● Test each record from the largest relation:

 Not found

Icons by Flaticon.com.
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Nested-loop join (NLJ)
● Memory requirements:

– One record from each relation
● Operations:

– If outer loop has N records
– Reads inner relation N times
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Large relations and sorting
● Algorithms using sorted data are more efficient (e.g. than 

nested loops)
● How to sort data that does not fit in memory?
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Merge-sort
● Split data in chunks that fit in memory:
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Merge-sort
● Load and sort each of them
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Merge-sort
● Load and sort each of them
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Merge-sort
● Select the next element with lowest key:
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Merge-sort
● Select the next element with lowest key:
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Merge-sort
● Select the next element with lowest key:
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Two-pass, full relation, unary
● First pass is sorting
● Duplicate elimination:

– Cache last record
– “select distinct * from X;”

● Grouping and aggregation:
– Cache last group
– “select count(*) from X group by b;”
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Example

● Assumptions:
– ~50%, y=1
– ~50%, y=2
– a few, y=3

● Query:
– select count(*) from X

where y = 1;
● Not efficient for frequent 

queries

z y

d 1

c 2

g 1

k 2

h 3

a 1

b 1

f 2

d 2

k 1

j 2

l 1

... ...
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Example

● Keep results cached when original table is updated: 

● Use with:
– select * from counts where y = 1;

y count

1 773647263

2 765732332

3 1
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Materialized views

scan X

count(*) group by y

create materialized view V as select y, count(*) from X

View
definition

materialize V

V 

selection y = 1

select * from V where y = 1

View
usage Plan executed



U. Minho Distributed Data Processing Environments 39

Summary
● A SQL system does:

– Transform the statement to relational algebra
– Selects physical operators
– Executes the resulting program

● Different execution strategies:
– Iteration is not good for analytical workloads

● Different physical operators:
– Each with performance tradeoffs

● Materialization is key for analytical performance 
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