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“Fast”

● Latency: time to complete a 
task

● Throughput: tasks completed 
in a unit of time

● Hard / expensive to achieve 
both at the same time
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Icons by Flaticon.com.
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Latency vs. throughput

● Latency vs. bandwidth 
trade-off changes with load

● When approaching system 
capacity, latency increases 
with queuing

● Optimization means 
pushing the curve 
right/down
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A model of computing

Icons by Flaticon.com.

FetchIP ->

Store

Load

Decode / Execute
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A model of computing

Icons by Flaticon.com.

● Challenges for data-intensive 
programs:
– RAM memory is not big enough
– RAM memory is not fast enough

Store

Load
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Memory hierarchy

latency

Cache

Registers

Network

capacity

Source: http://norvig.com/21-days.html#answers 

Key Issue:
How much data has to be moved for each operation

http://norvig.com/21-days.html#answers
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Memory hierarchy
● Minimize data movement to optimize performance
● General strategies:

– Improve locality  Do more with data that is already loaded →
up in the memory hierarchy

– Be thrifty  Avoid loading data that is not strictly necessary→
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A model of computing

Icons by Flaticon.com.

● Challenge for data-intensive programs:
– Computation is not fast enough

FetchIP ->

Decode / Execute
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Moore’s Law

Source https://github.com/karlrupp/microprocessor-trend-data 

https://github.com/karlrupp/microprocessor-trend-data
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Pipelining

Fetch Decode Load Execute Store

...

... ...

... ... ...

... ... ... ...

instruction latency = 5 cycles

throughput = 1 instruction / cycle
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Pipelining

Fetch Decode Load Execute Store

...

... ... ???

... ... ... stall

... ... ... ... stall

● Data dependency:
– Trying to load a value that has not yet been computed
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Pipelining

Fetch Decode Load Execute Store

???

stall stall

stall stall stall

stall stall stall stall

... stall stall stall stall

● Control flow dependency:
– Cannot predict the next instruction
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Vectorization

Fetch

Store

Load

Decode / Execute ● Use wide registers that can fit 
vectors instead of scalars:
– Example: Intel AVX512  512 bits→

● 64 byte vector
● 32 shorts
● 16 ints
● …

● Load, execute, and store full 
vectors, or slices of vectors, in a 
single instruction

● Key technique in GPUs

Icons by Flaticon.com.
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Multi-core

Icons by Flaticon.com.

FetchIP ->

Store

Load

Decode / Execute

Store

Load

FetchIP ->
Fetch <-  IP
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Distributed

FetchIP ->

Store

Load

Store

Load

FetchIP ->
Fetch <-  IP

Network

Icons by Flaticon.com.
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Coordination overhead
● Splitting a task incurs in coordination overhead
● Consider two versions of a chunked vector operation:

– Get chunk of size 1,  execute
– Get chunk of size 2, execute one and the other

op n+1

time

time

op n+1

op n+2 op n+1+1

...

...

coordinated a core
by itself
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Coordination overhead

op n+1

time

op n+1 ...

op n+1 op n+1 ...

op n+1 op n+1 ...

wait...

wait...

● Eventually, at least one core is blocked waiting for 
coordination
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Coordination overhead
time

op n+2 op n+1+1 ...

op n+2 op n+1+1 ...

op n+2 op n+1+1 ...

op n+2 op n+1+1 ...

op n+2 op n+1+1 ...

...

● Reducing the contention on coordination improves 
performance, even if doing the same work!
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Amdahl’s Law

Image from Wikipedia.

Key Issue:
How much time is used for coordination
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Fault tolerance

FetchIP ->

Store

Load

FetchIP ->

Network

● Distributed systems:
– More costly in terms of 

coordination, but...
– Enable fault tolerance

Icons by Flaticon.com.
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Hardware abstraction and protection?

Icons by Flaticon.com.

● How to run programs on 
computers with different 
configurations?
– Memory capacity
– # of CPU cores

● How to preven the running 
program from acessing all 
resources?
– Stored data
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Operating system

Icons by Flaticon.com.

Processes and scheduling

Virtual memory File systems / IO Networking
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Hypervisor

Icons by Flaticon.com.

0 0

Virtualization
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Cloud computing
● Hypervisors allow resources to be pooled and sliced

– Elasticity
– Computing as an utility

● Available in Infrastructure as a Service (IaaS) from cloud 
providers
– Cost effective for data storage and processing

Key Issue:
Exploiting cloud computing
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Summary
● Key issues for distributed data processing:

– Data movement
– Parallelism
– Coordination
– Financial cost
– Fault tolerance

● We will often justify design and implementation 
decisions with these issues!
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