
Distributed Data Processing Environments

José Orlando Pereira

Departamento de Informática
Universidade do Minho

U. Minho Distributed Data Processing Environments 2

“Fast”

● Latency: time to complete a
task

● Throughput: tasks completed
in a unit of time

● Hard / expensive to achieve
both at the same time

la
te

nc
y

throughput

Icons by Flaticon.com.

tra
deoff

💰

U. Minho Distributed Data Processing Environments 3

Latency vs. throughput

● Latency vs. bandwidth
trade-off changes with load

● When approaching system
capacity, latency increases
with queuing

● Optimization means
pushing the curve
right/down

throughput

la
te

nc
y

capacity

optim
iza

tio
n

U. Minho Distributed Data Processing Environments 4

A model of computing

Icons by Flaticon.com.

FetchIP ->

Store

Load

Decode / Execute

U. Minho Distributed Data Processing Environments 5

A model of computing

Icons by Flaticon.com.

● Challenges for data-intensive
programs:
– RAM memory is not big enough
– RAM memory is not fast enough

Store

Load

U. Minho Distributed Data Processing Environments 6

Memory hierarchy

latency

Cache

Registers

Network

capacity

Source: http://norvig.com/21-days.html#answers

Key Issue:
How much data has to be moved for each operation

http://norvig.com/21-days.html#answers

U. Minho Distributed Data Processing Environments 7

Memory hierarchy
● Minimize data movement to optimize performance
● General strategies:

– Improve locality Do more with data that is already loaded →
up in the memory hierarchy

– Be thrifty Avoid loading data that is not strictly necessary→

U. Minho Distributed Data Processing Environments 8

A model of computing

Icons by Flaticon.com.

● Challenge for data-intensive programs:
– Computation is not fast enough

FetchIP ->

Decode / Execute

U. Minho Distributed Data Processing Environments 9

Moore’s Law

Source https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data

U. Minho Distributed Data Processing Environments 10

Pipelining

Fetch Decode Load Execute Store

...

... ...

...

...

instruction latency = 5 cycles

throughput = 1 instruction / cycle

U. Minho Distributed Data Processing Environments 11

Pipelining

Fetch Decode Load Execute Store

...

... ... ???

... stall

... stall

● Data dependency:
– Trying to load a value that has not yet been computed

U. Minho Distributed Data Processing Environments 12

Pipelining

Fetch Decode Load Execute Store

???

stall stall

stall stall stall

stall stall stall stall

... stall stall stall stall

● Control flow dependency:
– Cannot predict the next instruction

U. Minho Distributed Data Processing Environments 13

Vectorization

Fetch

Store

Load

Decode / Execute ● Use wide registers that can fit
vectors instead of scalars:
– Example: Intel AVX512 512 bits→

● 64 byte vector
● 32 shorts
● 16 ints
● …

● Load, execute, and store full
vectors, or slices of vectors, in a
single instruction

● Key technique in GPUs

Icons by Flaticon.com.

U. Minho Distributed Data Processing Environments 14

Multi-core

Icons by Flaticon.com.

FetchIP ->

Store

Load

Decode / Execute

Store

Load

FetchIP ->
Fetch <- IP

U. Minho Distributed Data Processing Environments 15

Distributed

FetchIP ->

Store

Load

Store

Load

FetchIP ->
Fetch <- IP

Network

Icons by Flaticon.com.

U. Minho Distributed Data Processing Environments 16

Coordination overhead
● Splitting a task incurs in coordination overhead
● Consider two versions of a chunked vector operation:

– Get chunk of size 1, execute
– Get chunk of size 2, execute one and the other

op n+1

time

time

op n+1

op n+2 op n+1+1

...

...

coordinated a core
by itself

U. Minho Distributed Data Processing Environments 17

Coordination overhead

op n+1

time

op n+1 ...

op n+1 op n+1 ...

op n+1 op n+1 ...

wait...

wait...

● Eventually, at least one core is blocked waiting for
coordination

U. Minho Distributed Data Processing Environments 18

Coordination overhead
time

op n+2 op n+1+1 ...

op n+2 op n+1+1 ...

op n+2 op n+1+1 ...

op n+2 op n+1+1 ...

op n+2 op n+1+1 ...

...

● Reducing the contention on coordination improves
performance, even if doing the same work!

U. Minho Distributed Data Processing Environments 19

Amdahl’s Law

Image from Wikipedia.

Key Issue:
How much time is used for coordination

U. Minho Distributed Data Processing Environments 20

Fault tolerance

FetchIP ->

Store

Load

FetchIP ->

Network

● Distributed systems:
– More costly in terms of

coordination, but...
– Enable fault tolerance

Icons by Flaticon.com.

U. Minho Distributed Data Processing Environments 21

Hardware abstraction and protection?

Icons by Flaticon.com.

● How to run programs on
computers with different
configurations?
– Memory capacity
– # of CPU cores

● How to preven the running
program from acessing all
resources?
– Stored data

U. Minho Distributed Data Processing Environments 22

Operating system

Icons by Flaticon.com.

Processes and scheduling

Virtual memory File systems / IO Networking

U. Minho Distributed Data Processing Environments 23

Hypervisor

Icons by Flaticon.com.

0 0

Virtualization

U. Minho Distributed Data Processing Environments 24

Cloud computing
● Hypervisors allow resources to be pooled and sliced

– Elasticity
– Computing as an utility

● Available in Infrastructure as a Service (IaaS) from cloud
providers
– Cost effective for data storage and processing

Key Issue:
Exploiting cloud computing

U. Minho Distributed Data Processing Environments 25

Summary
● Key issues for distributed data processing:

– Data movement
– Parallelism
– Coordination
– Financial cost
– Fault tolerance

● We will often justify design and implementation
decisions with these issues!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

