
Isolation and Recovery

Database Administration
Lab Guide 6

2025/2026

Consider an improved version of the simplified invoice processing system (skelbench-v2),
adding basic inventory management (italics denote changes i.r.t. the previous version):

Client: Id, Name, Address, Data.

Product: Id, Description, Price, Ref, Data, Stock, Min, Max.

Invoice: Id, ProductId, ClientId, Price, Data.

InvoiceLine: Id, InvoiceId, ProductId, Price.

Orders: Id, ProductId, Items, Supplier, Data.

Evaluate the impact of the isolation level and logging configuration in the perfor-
mance of a transactional workload. Unless otherwise stated, execute the workload with
a low scale (-s 9) and multiple clients (-c 16).

Steps

1. Check the database error log while the benchmark is running (check the appendix
for more information). Observe the errors reported.

2. Use automatically generated primary keys (with SERIAL1) for the Invoice table.
Update both the table creation and the addInvoice statement. Re-run the
benchmark and observe the log again.

3. Observe the sporadic deadlock error in the log. Update the sell() transaction
to fix it.

4. To reduce the number of collisions in the order() transaction, optimize the
getLowStockProduct statement to select a random low-stock product in-
stead of the one with the smallest id.

5. Evaluate the performance with different WAL and checkpoint configurations.2 3

Consider longer runtimes to collect more accurate results (e.g., 3 minutes).

1https://www.postgresql.org/docs/18/datatype-numeric.html#
DATATYPE-SERIAL

2https://www.postgresql.org/docs/18/runtime-config-wal.html
3https://www.postgresql.org/docs/18/wal-configuration.html

https://www.postgresql.org/docs/18/datatype-numeric.html#DATATYPE-SERIAL
https://www.postgresql.org/docs/18/datatype-numeric.html#DATATYPE-SERIAL
https://www.postgresql.org/docs/18/runtime-config-wal.html
https://www.postgresql.org/docs/18/wal-configuration.html


6. Re-run the benchmark with different isolation levels4 (update the last line of
the Workload constructor). Test with TRANSACTION READ COMMITTED,
TRANSACTION REPEATABLE READ, and TRANSACTION SERIALIZABLE.
For each one, observe the database log.

7. For each isolation level, run the benchmark for 1, 2, 4, 8, 16 client threads. Plot
response time vs. throughput and rollbacks vs. throughput.

8. Examine each transaction and determine the minimum isolation required for cor-
rectness.5 At the start of each transaction, set the isolation level to the target (i.e.,
c.setTransactionIsolation(...);). Re-plot the scalability curves.

Questions

1. What concurrency hot-spots are responsible for observed rollbacks?

2. What strategies can be used to overcome each of these hot-spots?

3. What are the optimal WAL and checkpoint configurations?

4. What is the impact of the isolation level on performance and correctness?

5. If there was no check (stock > 0) constraint, and instead the sell()
transaction first read the stock and, if greater than 0, decremented it, what would
be the minimum isolation required?

Learning Outcomes Recognize the impact of different isolation levels and under-
lying concurrency control mechanisms in performance and scalability. Evaluate the
impact of recovery mechanisms in performance.

4https://www.postgresql.org/docs/18/transaction-iso.html
5To help in this task, you can open two psql sessions side by side with different isolations and test

queries. Check the appendix for more information.

2

https://www.postgresql.org/docs/18/transaction-iso.html


Accessing Postgres’ error log
• Using Docker:

docker logs postgres --tail 100 -f

• Using a native installation (the log location depends on the OS; on Linux, it is
often found at /var/log/postgresql/postgresql-17-main.log):

tail -n 100 -f /var/log/postgresql/postgresql-17-main.log

Transactions in PSQL
• Setting the isolation level at the start of each transaction:

-- start
testdb=# begin;
BEGIN

-- set the target isolation, e.g.
testdb=*# set transaction isolation level repeatable read;
SET

-- execute queries
...

-- commit
testdb=*# commit;
COMMIT

• Alternatively, we can set the isolation for every transaction executed in that ses-
sion.

-- e.g.
testdb=# set default_transaction_isolation to "repeatable read";

-- execute the transaction using default_transaction_isolation
testdb=# begin;
...

3


