
Optimization

Database Administration
Lab Guide 4

2024/2025

Consider now the optimization of the toy benchmark application. For each change,
evaluate its the impact by (i) observing the query plan and (ii) running the benchmark
for 1, 2, 4, 8, ... threads and plotting the corresponding scalability curve. Ensure the
benchmark’s scale (-s flag) is high (e.g., 16).

Steps

1. Change the sell id distribution by performing the following changes:

• id = random(2N ) | random(2N ) | random(2N )

int clientId = random.nextInt((int) Math.pow(2, scale)) |
random.nextInt((int) Math.pow(2, scale)) |
random.nextInt((int) Math.pow(2, scale));

int productId = random.nextInt((int) Math.pow(2, scale)) |
random.nextInt((int) Math.pow(2, scale)) |
random.nextInt((int) Math.pow(2, scale));

Using SQL, check how the new distribution behaves by obtaining the invoice
count per client after running the benchmark.

2. Analyze the plans generated by executing the account operation with the clients
with the most and least invoices. If the cost estimations are off by a large amount,
execute the ANALYZE command to update the statistics.1

3. Search and evaluate different plans by changing costs and disabling operators.2

E.g., random_page_cost, cpu_index_tuple_cost, enable_memoize,
enable_hashagg, etc.

4. Consider the following query:

SELECT c.id
FROM client c
WHERE (

SELECT count(*) >= 1
FROM invoice
WHERE invoice.productid = 32767 AND invoice.clientid = c.id

);

1https://www.postgresql.org/docs/17/sql-analyze.html
2https://www.postgresql.org/docs/17/runtime-config-query.html

https://www.postgresql.org/docs/17/sql-analyze.html
https://www.postgresql.org/docs/17/runtime-config-query.html


• Analyze the plan and identify the most expensive operation.

• Rewrite the query to improve its efficiency.

• With the original query, check the plan with jit3 disabled: SET jit = off;.

5. Evaluate the impact of removing the prepared statements from the benchmark.4

6. Consider the following query:
SELECT * FROM product WHERE description ~ '^(.*?){100}$'

• Force parallelism to be used by running the following commands:

SET parallel_setup_cost = 0;
SET parallel_tuple_cost = 0;
SET min_parallel_table_scan_size = 0;

• Vary max_parallel_workers_per_gather and analyze the plan.

7. Determine what resource is limiting the performance for each configuration. Consider
changes to memory configuration and CPU vs. I/O weights in the server configuration
file.

Questions

1. Does the engine generate different plans for the same query based on the argu-
ments provided?

2. Explain the usage of Bitmap Index Scan vs Index scan in the account
plan when executing with random page cost = 4 and random page
cost = 1, respectively (ensure the Invoice table has at least ≈50k rows).

3. What causes the long execution time in the query of step 4?

4. Does the engine generate different plans for the same prepared query based on
the arguments provided?5 What advantages do prepared statements provide?

5. What is the impact of adding more workers in step 6? Why does the optimizer
not opt to use parallelism by default for this particular query?

6. Considering all the optimizations that you have performed, to what extent have
you improved the maximum throughput of your application? What was the im-
provement in response time?

7. What is the relative impact of redundancy/algorithmic changes vs. configuration
changes?

Learning Outcomes Discuss trade-offs between different optimization decisions.
Plan, conduct,s and justify the steps to optimize the performance of a relational ap-
plication.

3https://www.postgresql.org/docs/17/jit.html
4In each query, create a new Statement object with the query and hardcoded parameters. E.g.:

Statement s = this.c.createStatement();
s.executeUpdate(String.format("insert into invoice (productid,
clientid, data) values (%s, %s, ’%s’)", clientId, productId,
randomString(1000)));

5Prepared statements in psql can be created using the PREPARE command: https://www.
postgresql.org/docs/17/sql-prepare.html

2

https://www.postgresql.org/docs/17/jit.html
https://www.postgresql.org/docs/17/sql-prepare.html
https://www.postgresql.org/docs/17/sql-prepare.html


Some configurations related to parallelism
-- Maximum number of worker processes
-- (server needs to be restarted when this parameter is modified)
max_worker_processes

-- Maximum parallel workers per operator
max_parallel_workers_per_gather

-- Cost to launch parallel workers
parallel_setup_cost

-- Cost of sending a tuple between workers
parallel_tuple_cost

-- Minimum table/index size to consider parallelism
min_parallel_table_scan_size
min_parallel_index_scan_size

3


