Database Administration

Jose Orlando Pereira

Departamento de Informatica
Universidade do Minho




Motivation

 First, implement each operation assuming that no two
operations run concurrently

* Then, assume that any operations can run concurrently

* What can go wrong?
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Lost update (RWW)

t1 t2
sell X: sell X:

read stock of read stock of

product X 7 product X

\\\\\ i
write stock of 4
product X b, |

""""""" A write stock of

product X

\/ y
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Dirty read (WRW)

t1 t2
sell X: sell X:
write stock of
product X W/r ,,,,,
......... Aread stock of
“““““““ —— product X
rollback“*
\ \
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Non-repeatable read (RWR)

U. Minho

aelivery X:

write stock of A

product X
commit

order X:

read stock of
product X
(check if < min)

read stock of
product X
(compute amount)
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Other anomalies?

* Read after read is not a problem
— Thus no RRW, WRR...

 Why no WWR?
— Assume no “blind writes”
- Actually a RWWR (lost update)
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Phantoms

t1
aelivery X:

scan orders = X-.,

write stock of
product X

scan orders = X,Y**
delete X, Y

commit
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order Y:

~insert order of Y
commit
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Phantoms

* |t is actually a non-repeatable read (RWR) on the
collection

« Why no dirty read (WRW) for collections?
- Solved by having no dirty reads on the item
« Why no RWW (lost update) for collections?
- Means allocating the same physical space for two records!

- Very dangerous: corruption, etc...
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Write skew (aka “short fork”)

sell X:

read stock of

products X and Y-,

(check X+Y>0)

write stock of X
commit

t1

\/

(assume X is backup for Y and vice-versa)
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sell Y:

read stock of

Pproducts X and Y

(check X+Y>0)

write stock of Y
commit
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Write skew on collections

order X:
read stock of
product X
(check if < min)

check for pending
orders of X

n

order of X from A
commit
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read stock of
product X
(check if < min)

check for pending
orders of X

order of X from B
commit
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General problem

e No serial execution is
conceivable:

- Some t1 must be ordered after t2
- But t2 must be ordered after 11

* The user cannot be fooled into
thinking that transactions
execute serially (i.e. serialized)
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General problem

t1 t2
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* In detail, some operation X
should not be happening
between A and B...
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General approach

t1 t2

* Delay X (and all its
consequences) until B

- 11 precedes t2
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General approach

t1 £2
A
e Remove X and related
operations 5
- t1 executes alone
rollback
\j y
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General approach

 Anticipate X (i.e. execute X
before the application has
requested it!)

- 12 precedes t1

 (Can you propose a
mechanism to do this!?)
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