Database Administration

Jose Orlando Pereira

Departamento de Informatica
Universidade do Minho

Motivation

 First, implement each operation assuming that no two
operations run concurrently

* Then, assume that any operations can run concurrently

* What can go wrong?

U. Minho Database Administration

39

Lost update (RWW)

t1 t2
sell X: sell X:

read stock of read stock of

product X 7 product X

\\\\\ i
write stock of 4
product X b, |

""""""" A write stock of

product X

\/ y

U. Minho Database Administration

40

Dirty read (WRW)

t1 t2
sell X: sell X:
write stock of
product X W/r ,,,,,
......... Aread stock of
“““““““ —— product X
rollback“*
\ \

U. Minho Database Administration

41

Non-repeatable read (RWR)

U. Minho

aelivery X:

write stock of A

product X
commit

order X:

read stock of
product X
(check if < min)

read stock of
product X
(compute amount)

“““
)
ot
W
\““‘
\
I’\'fW
\““‘
4
4y
WL
4
%, .
0
0
c,",
%,
4
lj‘l..;k
mEn

Database Administration

42

Other anomalies?

* Read after read is not a problem
— Thus no RRW, WRR...

 Why no WWR?
— Assume no “blind writes”
- Actually a RWWR (lost update)

U. Minho Database Administration

43

Phantoms

t1
aelivery X:

scan orders = X-.,

write stock of
product X

scan orders = X,Y**
delete X, Y

commit

t2

4,
4
.,
,,,,,
L7
4,
L)

\
A
t\ Y
t\)
““““
\)
t\}
.
t\}

t\)
L\
t\)
““““
\)
t\)
\)

order Y:

~insert order of Y
commit

U. Minho Database Administration

44

Phantoms

* |t is actually a non-repeatable read (RWR) on the
collection

« Why no dirty read (WRW) for collections?
- Solved by having no dirty reads on the item
« Why no RWW (lost update) for collections?
- Means allocating the same physical space for two records!

- Very dangerous: corruption, etc...

U. Minho Database Administration

45

Write skew (aka “short fork”)

sell X:

read stock of

products X and Y-,

(check X+Y>0)

write stock of X
commit

t1

\/

(assume X is backup for Y and vice-versa)

U. Minho

-
o
O
O
O
o
o
K
. N

0
*, K
*, o
‘e, \\“
577 IR
AW
0 ?
Q »,
O e,
o %,
- 4,

‘e,
e,
e,
4,
4,
4,
,
4,
e ‘

t2

\/

Database Administration

sell Y:

read stock of

Pproducts X and Y

(check X+Y>0)

write stock of Y
commit

46

Write skew on collections

order X:
read stock of
product X
(check if < min)

check for pending
orders of X

n

order of X from A
commit

U. Minho

t1

l,'

\/

e 4
lllllll

[})
,,,,,,,,

1y)

"y o

"y a
"""""

\}
0y}
t\)
““““
t\)
N

t2

order X:

\\\\

n
,
n
,,,,,
n
)
[

\/

Database Administration

read stock of
product X
(check if < min)

check for pending
orders of X

order of X from B
commit

47

General problem

e No serial execution is
conceivable:

- Some t1 must be ordered after t2
- But t2 must be ordered after 11

* The user cannot be fooled into
thinking that transactions
execute serially (i.e. serialized)

U. Minho Database Administration

t1 t2

e,
"
0
n
n
0
n
n
n
(]
,,,,,
0
n,
n
0
n
n
0y
n
n
’

()Y
()
1\
(\)
()
1\
1\
()
\}
(\}
““““
(1)
(1)
"
(1)
i\
()
1\
(\)
(A
1\

48

General problem

t1 t2

e,
"
,
n
n
L)
n
n
n
v
,,,,,
n
n,
L
4,
n
n
o,
n
n
’

* In detail, some operation X
should not be happening
between A and B...

3
(\\
(AN
(AN
(AN
(AN
(AN
\\\\\\
)
w
w
w
w
w
w

U. Minho Database Administration

General approach

t1 t2

* Delay X (and all its
consequences) until B

- 11 precedes t2

U. Minho Database Administration 50

General approach

t1 £2
A
e Remove X and related
operations 5
- t1 executes alone
rollback
\j y

U. Minho Database Administration 51

General approach

 Anticipate X (i.e. execute X
before the application has
requested it!)

- 12 precedes t1

 (Can you propose a
mechanism to do this!?)

U. Minho Database Administration

	Slide 1
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

