Database Administration

Jose Orlando Pereira

Departamento de Informatica
Universidade do Minho

Roadmap

* How to estimate the cost of a plan?

* How to find alternative plans?

U. Minho Database Administration 155

Search space

* The set of possible alternative plans (search space) is
determined by a set of rules

— Equivalent relational algebra expressions

— Physical implementation of single operators or plan
fragments

— Enforcing physical properties

* The set of rules is the main configuration point for
extensible query optimizers

U. Minho Database Administration 156

A simple rule for Join order

* Innerjoinis
commutative and

associative
L DA(XyY) =
A A L DA(yX) =
/\ /\ (...>dy) DX
D] Y DY X+ This allows exploring
/\ /\ all left-deep trees
Y

— n! permutations

* Does not consider
bushy trees

U. Minho Database Administration 157

Join commutativity and associativity

« Separately considering

§) commutativity and
/\ /\ associativity rules
v X * Allows exploring all
possible join
expressions:

/\ /N\ - Including bushy trees
> Y b
X y

U. Minho Database Administration 158

x

Cross-products

< Cyb) « Associativity rules may result in

/\ cross-products

(=xa) Y e These are not useful as

physical plans, as they result in
a lot of intermediary data

Q * May be useful as an interim

>4 (..=X2, .=Y.b) transformation for an useful
/\ plan

" M (true)

U. Minho Database Administration 159

Selection push-down

U. Minho

o

I:)|

(x)

K

gl

Y

K

o p(x)

X

Y

* Possible when the predicate
involves only one of the
branches

- Otherwise, merge it in the join
condition!

* |f the predicate is highly
selective, reduces the amount
of work in join

» Selectivity is the key criteria for
join ordering!!!

Database Administration 160

Selection pull-up

) * Always possible, but...

P
| * Does it ever make sense?!?!

7%

X Y
K

o p(x) y

o

X

U. Minho Database Administration 161

Selection pull-up

* Assume that g is highly selective

K Assume that p is very costly to
execute:

o p|(><)

X

y
- e.g. call into an LLM to check if
“sentiment” on a textual column is
“positive”
y

K

o p(x)

 Can be useful!

X

U. Minho Database Administration 162

Sideways information passing

o cardinatity] . W.hen implemented as a hash-
join:
) M (x.2=Y.a) — Builds a very large in-memory
high volume ?/\ table from y
X Y - Uses only a few items
Q Sideways information passing

- caya) from left to right side of join:

/\ - List of relevant keys for filtering
B% * Very important in federated /
disaggregated systems!

SELEC

DISTINCT a

U. Minho FROM x Database Administration 163

More transformation rules

» Selection and projection push-down (and pull-up) through
other operators

* Push down group-by through join
* Sub-query decorrelation

* Note that logical operators have 0o cost because they
cannot be actually executed!

U. Minho Database Administration 164

Access path implementation

* Physical access operators
(scans) can filter and project,
reducing the amount of data

SS(x,[a,b],a=3) movement
n x.a,x.b . .
T - Using indexes

o x.2=3 %I prOpertﬂ - Using columnar storage

* Indexes can also be used to
ordered traversal of data
(without filtering)

(sorted a)
IS(x_a(3),[a,b])

U. Minho Database Administration 165

Grouping and aggregation implementation

* Two-pass algorithms for
HA(Ga] (b)) grouping (and join) depend on
sorted input

y [a] f(b) - Expressed as a required

“physical property”
y MA((al, (b)) * Sorting is preserved

(sorted a)

required
physical property

U. Minho Database Administration 166

Other implementation rules

* Other access path operators:
- Index-only scan
- Bitmap indexes

« Join implementations

* The cost of physical operators is not co and can be
estimated, leading to executable plans!

U. Minho Database Administration 167

Enforcers

* Do not change data

* Enforce a specific physical
property on data

* Have finite cost

sorta * Examples:
T — Order = Sort operator
— Partition -» Exchange

(sorted a)

* See search algorithm for more
details

U. Minho Database Administration 168

Search space

* Rule sets that produce a larger search space:
— More likely to contain the optimum — faster execution
- More work to evaluate all alternatives — faster planning

* Query execution is the sum of planning and execution

* Best overall performance:
- Depends on workload
- Found as a compromise of planning and execution

U. Minho Database Administration 169

Search algorithm

AQADA

* Repeated application of rules can result in an infinite loop

« Solution:
- Remember all plans to check for repetitions

U. Minho Database Administration 170

Search algorithm

c=100
VAN

/ \
/ \
AN
=11 \
Y

* The cost of a sub-plan of an alternative being explored
may be greater that the total cost of the best know
alternative

* Solution:
— Prune search based on current best estimate

U. Minho Database Administration 171

Search algorithm

* Some sequences of rule applications tend to converge
faster to the optimum plan

- The sooner that we get a “good” estimate, the more
alternatives that can be pruned

« Solution:
— Order available rules by their heuristic promise

U. Minho Database Administration 172

Example
SELECT a, COUNT(*) FROM x WHERE a > 10;

4 N

o

4 b N
s a>10 2: v [al C,0unt()

1
v [a] count(b) l o a>10 \|
: 3: 9 I Matches selection push-down rule
N S
> Root: 3

U. Minho Database Administration 173

Example
SELECT a, COUNT(*) FROM x WHERE a > 10;

4)
1 X
-
4 N
o1 5 |7 [a] count(b)
’ ' 1
y [a] count(b) (A
3: o a>10 v [@] count(b)
' 12 4
X I’ e \
I
: 4: o a;lo I Matches index scan implementation rule
_____.____j/l
Root: 3

U. Minho Database Administration 174

Example

SELECT a, COUNT(*) FROM x WHERE a > 10;

oga>10

y [a] count(b)

U. Minho

Database Administration

)

4)
X
-
4 N
| y [a] count(b)
' 1
N 7 N
oa>10 v [@] count(b) | |HG [a]count(b)
12 4 4 c=223
O\ J
oa>10 IS x_a, >10 group/agg.
1 c=123 implementatio
. ' Y, rule
Root: 3

175

Example
SELECT a, COUNT(*) FROM x WHERE a > 10;

I 4 \\

I
: 1: X I Matches sequential scan implementation rule
I

(4 [a] count(b)

o a>10 2: 1
y [a] count(b) N[h
3: oa>10 v [@] count(b) | |[HG [a]count(b)
' ;2 4 4 c=223
O\ J
X N
4 g a>10 IS x_a, >10
' 1 c=123
- J
current
Root: 3 best plan

U. Minho Database Administration 176

Example

SELECT a, COUNT(*) FROM x WHERE a > 10;

oga>10

y [a] count(b)

U. Minho

Ve

N

~

SS x
c=9321

[y [a] count(b) |

don't bother
with this grou

already worse
than the best

|

3

HG [a]count(b)

4 c=223

:1
N 7 N
oa>10 v [@] count(b)
12 4
O\ J
o a>10 IS x_a, >10
1 c=123
- J
Root: 3

Database Administration

177

Volcano/Cascades search

* Top down search, from root

* When entering a group, for each expression:
— Optimize inputs to expression
— Apply each rule expression:

* Order rule application by promise

» Reconsider each group (and ancestors) when new
expressions are found

* Volcano and Cascades differ how rule matching tasks
are scheduled

U. Minho Database Administration 178

Conclusions

* Make sure that the best option is available:
- Indexes and materialized views
— Sufficient memory for all operators

* Make sure the best option is selected:
- Tune relative weights
— Provide current and sufficiently detailed statistics

U. Minho Database Administration 179

PostgreSQL

« Simpler bottom-up optimization algorithm
— Limits use of materialized views

PostgreSQL

* Not designed for extensibility
* No hinting:
— Considered a bug!

* Optional genetic solver for join ordering

U. Minho Database Administration 180

7l APACHE

Apache Calcite qcalcite

* Implements Volcano/Cascades in Java

* Large general purpose rule collection
- Including materialized view substitution

* Aimed at federated database systems:

- Multiple sets of physical implementation operators, that map
to requests to different systems

- Native physical implementations (Enumerable)

U. Minho Database Administration 181

	Slide 1
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181

