Database Administration

Jose Orlando Pereira

Departamento de Informatica
Universidade do Minho




Roadmap

* How to estimate the cost of a plan?

* How to find alternative plans?
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Search space

* The set of possible alternative plans (search space) is
determined by a set of rules

— Equivalent relational algebra expressions

— Physical implementation of single operators or plan
fragments

— Enforcing physical properties

* The set of rules is the main configuration point for
extensible query optimizers
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A simple rule for Join order

* Innerjoinis
commutative and

associative
L DA(XyY) =
A A L DA(yX) =
/\ /\ (...>dy) DX
D] Y DY X+ This allows exploring
/\ /\ all left-deep trees
Y

— n! permutations

* Does not consider
bushy trees
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Join commutativity and associativity

« Separately considering

§ ) commutativity and
/\ /\ associativity rules
v X * Allows exploring all
possible join
expressions:

/\ /N\ - Including bushy trees
> Y b
X y
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Cross-products

< Cyb) « Associativity rules may result in

/\ cross-products

(=xa) Y e These are not useful as

physical plans, as they result in
a lot of intermediary data

Q * May be useful as an interim

>4 (..=X2, .=Y.b) transformation for an useful
/\ plan

" M (true)
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Selection push-down
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* Possible when the predicate
involves only one of the
branches

- Otherwise, merge it in the join
condition!

* |f the predicate is highly
selective, reduces the amount
of work in join

» Selectivity is the key criteria for
join ordering!!!
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Selection pull-up

) * Always possible, but...

P
| * Does it ever make sense?!?!

7%

X Y
K

o p(x) y

o

X
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Selection pull-up

* Assume that g is highly selective

K  Assume that p is very costly to
execute:

o p|(><)

X

y
- e.g. call into an LLM to check if
“sentiment” on a textual column is
“positive”
y

K

o p(x)

 Can be useful!

X
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Sideways information passing

o cardinatity ] . W.hen implemented as a hash-
join:
) M (x.2=Y.a) — Builds a very large in-memory
high volume ?/\ table from y
X Y - Uses only a few items
Q  Sideways information passing

- caya) from left to right side of join:

/\ - List of relevant keys for filtering
B% * Very important in federated /
disaggregated systems!

SELEC

DISTINCT a
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More transformation rules

» Selection and projection push-down (and pull-up) through
other operators

* Push down group-by through join
* Sub-query decorrelation

* Note that logical operators have 0o cost because they
cannot be actually executed!
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Access path implementation

* Physical access operators
(scans) can filter and project,
reducing the amount of data

SS(x,[a,b],a=3) movement
n x.a,x.b . .
T - Using indexes

o x.2=3 %I prOpertﬂ - Using columnar storage

* Indexes can also be used to
ordered traversal of data
(without filtering)

(sorted a)
IS(x_a(3),[a,b])
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Grouping and aggregation implementation

* Two-pass algorithms for
HA(Ga] (b)) grouping (and join) depend on
sorted input

y [a] f(b) - Expressed as a required

“physical property”
y MA((al, (b)) * Sorting is preserved

(sorted a)

required
physical property
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Other implementation rules

* Other access path operators:
- Index-only scan
- Bitmap indexes

« Join implementations

* The cost of physical operators is not co and can be
estimated, leading to executable plans!
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Enforcers

* Do not change data

* Enforce a specific physical
property on data

* Have finite cost

sorta * Examples:
T — Order = Sort operator
— Partition -» Exchange

(sorted a)

* See search algorithm for more
details
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Search space

* Rule sets that produce a larger search space:
— More likely to contain the optimum — faster execution
- More work to evaluate all alternatives — faster planning

* Query execution is the sum of planning and execution

* Best overall performance:
- Depends on workload
- Found as a compromise of planning and execution
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Search algorithm

AQADA

* Repeated application of rules can result in an infinite loop

« Solution:
- Remember all plans to check for repetitions
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Search algorithm

c=100
VAN

/ \
/ \
AN
=11 \
Y

* The cost of a sub-plan of an alternative being explored
may be greater that the total cost of the best know
alternative

* Solution:
— Prune search based on current best estimate
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Search algorithm

* Some sequences of rule applications tend to converge
faster to the optimum plan

- The sooner that we get a “good” estimate, the more
alternatives that can be pruned

« Solution:
— Order available rules by their heuristic promise
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Example
SELECT a, COUNT(*) FROM x WHERE a > 10;

4 N

o

4 b N
s a>10 2: v [al C,0unt( )

1
v [a] count(b) l o a>10 \|
: 3: 9 I Matches selection push-down rule
N S
> Root: 3
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Example
SELECT a, COUNT(*) FROM x WHERE a > 10;

4 )
1 X
-
4 N
o1 5 |7 [a] count(b)
’ ' 1
y [a] count(b) ( A
3: o a>10 v [@] count(b)
' 12 4
X I’ e \
I
: 4: o a;lo I Matches index scan implementation rule
\__\___.____j/l
Root: 3
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Example

SELECT a, COUNT(*) FROM x WHERE a > 10;

oga>10

y [a] count(b)

U. Minho
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)

4 )
X
-
4 N
| y [a] count(b)
' 1
N 7 N
oa>10 v [@] count(b) | |HG [a]count(b)
12 4 4 c=223
O\ J
oa>10 IS x_a, >10 group/agg.
1 c=123 implementatio
. ' Y, rule
Root: 3
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Example
SELECT a, COUNT(*) FROM x WHERE a > 10;

I 4 \\

I
: 1: X I Matches sequential scan implementation rule
I

(4 [a] count(b)

o a>10 2: 1
y [a] count(b) N[ h
3: oa>10 v [@] count(b) | |[HG [a]count(b)
' ;2 4 4 c=223
O\ J
X N
4 g a>10 IS x_a, >10
' 1 c=123
- J
current
Root: 3 best plan

U. Minho Database Administration 176



Example

SELECT a, COUNT(*) FROM x WHERE a > 10;

oga>10

y [a] count(b)

U. Minho

Ve

N

~

SS x
c=9321

[y [a] count(b) |

don't bother
with this grou

already worse
than the best

|

3

HG [a]count(b)

4 c=223

:1
N 7 N
oa>10 v [@] count(b)
12 4
O\ J
o a>10 IS x_a, >10
1 c=123
- J
Root: 3
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Volcano/Cascades search

* Top down search, from root

* When entering a group, for each expression:
— Optimize inputs to expression
— Apply each rule expression:

* Order rule application by promise

» Reconsider each group (and ancestors) when new
expressions are found

* Volcano and Cascades differ how rule matching tasks
are scheduled

U. Minho Database Administration 178



Conclusions

* Make sure that the best option is available:
- Indexes and materialized views
— Sufficient memory for all operators

* Make sure the best option is selected:
- Tune relative weights
— Provide current and sufficiently detailed statistics
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PostgreSQL

« Simpler bottom-up optimization algorithm
— Limits use of materialized views

PostgreSQL

* Not designed for extensibility
* No hinting:
— Considered a bug!

* Optional genetic solver for join ordering
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7l APACHE

Apache Calcite qcalcite

* Implements Volcano/Cascades in Java

* Large general purpose rule collection
- Including materialized view substitution

* Aimed at federated database systems:

- Multiple sets of physical implementation operators, that map
to requests to different systems

- Native physical implementations (Enumerable)
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