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Transaction
● A unit of work composed by individual read and write 

database operations
● Can be committed or rolled back
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ACID Transactions
● Atomicity
● Consistency
● Isolation
● Durability

● The developer only cares 
about:
– the logic of each 

transaction
– running alone
– in a perfect world
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Atomicity vs. durability
● How to ensure both upon failure?

– A single transaction might update multiple disk sectors
– Upon reboot, any subset of pending sectors might have been 

updated
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Atomicity vs. durability
● Durability without atomicity is easy:

– Update database files before acknowledging commit
● Atomicity without durability is also easy:

– Upon reboot, erase the database!
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Goal
● A sequence of atomic operations is not an atomic 

operation
● There is a general purpose technique for obtaining an 

atomic sequence of operations
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Requirements
● Additional storage, written sequentially (a log)
● Storage operations:

– Individual operations are atomic
– It is known when individual operations are finished

● Later, we need to remove / reuse old log entries
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Redo log
● First method: Re-Do log
● Based on “re-doing missing writes”
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● The application changes the memory cache:

Redo log

1 2 3 ...0

1 2 3 6 ...

Memory cache:

Backing store:

Log:

HeadTail

Grows...
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● Dirty blocks are copied to the log followed by a commit 
marker:

Redo log

2 6

2 6 C

Memory cache:

Backing store:

Log:
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Log format
● Physical: The block itself

– Clearly idempotent
– Inefficient

● Logical: The command that changes the block
– Harder to make it idempotent (INSERT?)
– Space efficient

● “Physiological”:
– Either one of the above, depending on the operation, the 

context, ...
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● Eventually, dirty blocks are copied to the backing store:

Redo log

2 6

2 6

Memory cache:

Backing store:

2 6 C

Log:

... ...
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● Recovery after restart:
– Copy blocks of transactions with commit markers from the 

log to storage
– Forward (tail to head)

Redo log

1 2 3 6

2 6 C 3 C 1...

Backing store:

Log:

...
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Redo log truncation
● When can a log prefix be removed?
● Naive approach: Write all changes of committed 

transactions to disk
● How to keep track of which transactions modified each 

block?
● Cannot write a memory block to disk if it has been 

modified by a running transaction:
– No-steal

● What if a block has been modified by two transactions: 
one finished, one running?
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Redo log summary
● The good:

– The transaction can be committed without modifying the 
backing store (no force)

● The bad:
– Modifications can only be written to backing store after the 

transaction begins committing  (no steal)
● Checkpoints are hard
● Assumes that memory is large enough to hold all modifications
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Undo log
● Second method: Un-Do log
● Based on “un-doing unwanted writes”



U. Minho Database Administration 19

● Original values of dirty blocks are copied to the log:

Undo log

2 6

2 6

2 6...

Memory cache:

Backing store:

Log:

...
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● Modified blocks are copied to the backing store:

Undo log

2 6

2 6

2 6...

Memory cache:

Backing store:

Log:

...
Dirty blocks can now

be evicted from cache!
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● A commit marker is inserted in the log:

Undo log

2 6

2 6

2 6 C

Memory cache:

Backing store:

Log:

... ...
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● Recovery after restart:
– Copy back entries of transactions without commit markers
– Backward (head to tail)

Undo log

1 2 3 6

2 6 C 3 1

Backing store:

Log:

... ...
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Undo log truncation
● When can a log prefix be removed?
● Can always write all memory to disk, even while there are 

running transactions
– Steal
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● The log must still be kept due to a possible very old 
running transaction

Undo log truncation

2

2 . . . .

Backing store:

Log:

.

1 2 3 6

Memory cache:

... ...
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Undo log truncation
● Waiting for all transactions to finish means:

– Disk is now consistent
– Log is no longer required

● Can we account for running transactions and avoid 
stopping the system?
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Undo log truncation
● Non-quiescent (a.k.a. fuzzy) checkpoint:

– Write to log “start checkpoint” marker with a list of running 
transactions <T1, ..., Tn>

– Wait until <T1, ..., Tn> have finished
● Implicitly writes all modified memory blocks
● Other transactions may start in between

– Write “end checkpoint” marker

a . . . b a

Log:
S b c a E d c

a, b
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Undo log truncation
● Recovery to a complete checkpoint:

– Search log until “start checkpoint”
– No unfinished transactions exist before that

a . . . b a

Log:
S b c a E d c

a, b
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Undo log truncation
● Recovery to an incomplete checkpoint:

– Search log until “start checkpoint”
– Get list of possibly unfinished transactions
– Continue searching the log until all found

(likely to be close...)

. . a . b a

Log:
S b c

a, b



U. Minho Database Administration 29

Undo log
● The good:

– Modifications can be written to backing store before entering 
commit (steal)

● Lock granularity can be smaller than a block
● Much easier checkpoints
● Assumes only that the log is large enough to hold all 

modifications
● The bad:

– Modifications must be written to backing store before 
entering commit (force)
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Undo-Redo log
● Third method: Un-Do and Re-Do log
● Based on using both previous methods simultaneously
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● Blocks can be changed after having been copied to the 
log (undo):

Undo-redo log

2

2

2...

Memory cache:

Backing store:

Log:

...
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● Before commit, new values are also copied to the log 
(redo):

Undo-redo log

2

2

2...

Memory cache:

Backing store:

Log:

... 2
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● A commit marker is inserted in the log:

Undo-redo log

2

2

2...

Memory cache:

Backing store:

Log:

... 2 C
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● Do both recovery procedures:
– Redo, tail to head
– Undo, head to tail

Undo-redo log

2 6

2 2 C 66...

Backing store:

Log:

...

Does order matter?
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● Order matters only if:
– Unfinished t2 updates same item as finished t1
– t2 reads x before t1 writes x

● Means that:
– t1 and t2 would be concurrent transactions
– Both would have a lock on x!

Undo-redo log

x C x...

Log: t1 t2
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Undo-redo log summary
● If all log entries contain both undo and redo data:

– A block can be always be copied to backing store (steal)
– A transaction can always commit immediately (no force)
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Backup
● A full backup may take hours
● How to copy the database while processing update 

transactions?

1 2 3 ...0

1 2 3 6 ...
Memory cache:

Backing store:

Log:

1 2 3 ...0
Store backup:

Log backup:

checkpoint

backup
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Case study: PostgreSQL
● Log method:

– Redo log (a.k.a. WAL)
– Undo log implicit in previous versions (updates never 

overwrite!)
● Log format:

– Logical for most operations
– Physical, the first time each block is modified after a 

checkpoint
● Background writer and periodical checkpoints
● On-line archiving and backup (a.k.a. PITR)
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Conclusions
● Atomicity and durability ensured by undo-redo logging

– Recovery
– Checkpointing

● Backup adds one more level and different trade-offs, but 
the problem is fundamentally the same
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