
Database Administration

José Orlando Pereira

Departamento de Informática
Universidade do Minho

U. Minho Database Administration 2

Transaction
● A unit of work composed by individual read and write

database operations
● Can be committed or rolled back

U. Minho Database Administration 3

ACID Transactions
● Atomicity
● Consistency
● Isolation
● Durability

● The developer only cares
about:
– the logic of each

transaction
– running alone
– in a perfect world

U. Minho Database Administration 6

Atomicity vs. durability
● How to ensure both upon failure?

– A single transaction might update multiple disk sectors
– Upon reboot, any subset of pending sectors might have been

updated

U. Minho Database Administration 7

Atomicity vs. durability
● Durability without atomicity is easy:

– Update database files before acknowledging commit
● Atomicity without durability is also easy:

– Upon reboot, erase the database!

U. Minho Database Administration 8

Goal
● A sequence of atomic operations is not an atomic

operation
● There is a general purpose technique for obtaining an

atomic sequence of operations

U. Minho Database Administration 9

Requirements
● Additional storage, written sequentially (a log)
● Storage operations:

– Individual operations are atomic
– It is known when individual operations are finished

● Later, we need to remove / reuse old log entries

U. Minho Database Administration 10

Redo log
● First method: Re-Do log
● Based on “re-doing missing writes”

U. Minho Database Administration 11

● The application changes the memory cache:

Redo log

1 2 3 ...0

1 2 3 6 ...

Memory cache:

Backing store:

Log:

HeadTail

Grows...

U. Minho Database Administration 12

● Dirty blocks are copied to the log followed by a commit
marker:

Redo log

2 6

2 6 C

Memory cache:

Backing store:

Log:

U. Minho Database Administration 13

Log format
● Physical: The block itself

– Clearly idempotent
– Inefficient

● Logical: The command that changes the block
– Harder to make it idempotent (INSERT?)
– Space efficient

● “Physiological”:
– Either one of the above, depending on the operation, the

context, ...

U. Minho Database Administration 14

● Eventually, dirty blocks are copied to the backing store:

Redo log

2 6

2 6

Memory cache:

Backing store:

2 6 C

Log:

... ...

U. Minho Database Administration 15

● Recovery after restart:
– Copy blocks of transactions with commit markers from the

log to storage
– Forward (tail to head)

Redo log

1 2 3 6

2 6 C 3 C 1...

Backing store:

Log:

...

U. Minho Database Administration 16

Redo log truncation
● When can a log prefix be removed?
● Naive approach: Write all changes of committed

transactions to disk
● How to keep track of which transactions modified each

block?
● Cannot write a memory block to disk if it has been

modified by a running transaction:
– No-steal

● What if a block has been modified by two transactions:
one finished, one running?

U. Minho Database Administration 17

Redo log summary
● The good:

– The transaction can be committed without modifying the
backing store (no force)

● The bad:
– Modifications can only be written to backing store after the

transaction begins committing (no steal)
● Checkpoints are hard
● Assumes that memory is large enough to hold all modifications

U. Minho Database Administration 18

Undo log
● Second method: Un-Do log
● Based on “un-doing unwanted writes”

U. Minho Database Administration 19

● Original values of dirty blocks are copied to the log:

Undo log

2 6

2 6

2 6...

Memory cache:

Backing store:

Log:

...

U. Minho Database Administration 20

● Modified blocks are copied to the backing store:

Undo log

2 6

2 6

2 6...

Memory cache:

Backing store:

Log:

...
Dirty blocks can now

be evicted from cache!

U. Minho Database Administration 21

● A commit marker is inserted in the log:

Undo log

2 6

2 6

2 6 C

Memory cache:

Backing store:

Log:

... ...

U. Minho Database Administration 22

● Recovery after restart:
– Copy back entries of transactions without commit markers
– Backward (head to tail)

Undo log

1 2 3 6

2 6 C 3 1

Backing store:

Log:

... ...

U. Minho Database Administration 23

Undo log truncation
● When can a log prefix be removed?
● Can always write all memory to disk, even while there are

running transactions
– Steal

U. Minho Database Administration 24

● The log must still be kept due to a possible very old
running transaction

Undo log truncation

2

2

Backing store:

Log:

.

1 2 3 6

Memory cache:

... ...

U. Minho Database Administration 25

Undo log truncation
● Waiting for all transactions to finish means:

– Disk is now consistent
– Log is no longer required

● Can we account for running transactions and avoid
stopping the system?

U. Minho Database Administration 26

Undo log truncation
● Non-quiescent (a.k.a. fuzzy) checkpoint:

– Write to log “start checkpoint” marker with a list of running
transactions <T1, ..., Tn>

– Wait until <T1, ..., Tn> have finished
● Implicitly writes all modified memory blocks
● Other transactions may start in between

– Write “end checkpoint” marker

a . . . b a

Log:
S b c a E d c

a, b

U. Minho Database Administration 27

Undo log truncation
● Recovery to a complete checkpoint:

– Search log until “start checkpoint”
– No unfinished transactions exist before that

a . . . b a

Log:
S b c a E d c

a, b

U. Minho Database Administration 28

Undo log truncation
● Recovery to an incomplete checkpoint:

– Search log until “start checkpoint”
– Get list of possibly unfinished transactions
– Continue searching the log until all found

(likely to be close...)

. . a . b a

Log:
S b c

a, b

U. Minho Database Administration 29

Undo log
● The good:

– Modifications can be written to backing store before entering
commit (steal)

● Lock granularity can be smaller than a block
● Much easier checkpoints
● Assumes only that the log is large enough to hold all

modifications
● The bad:

– Modifications must be written to backing store before
entering commit (force)

U. Minho Database Administration 30

Undo-Redo log
● Third method: Un-Do and Re-Do log
● Based on using both previous methods simultaneously

U. Minho Database Administration 31

● Blocks can be changed after having been copied to the
log (undo):

Undo-redo log

2

2

2...

Memory cache:

Backing store:

Log:

...

U. Minho Database Administration 32

● Before commit, new values are also copied to the log
(redo):

Undo-redo log

2

2

2...

Memory cache:

Backing store:

Log:

... 2

U. Minho Database Administration 33

● A commit marker is inserted in the log:

Undo-redo log

2

2

2...

Memory cache:

Backing store:

Log:

... 2 C

U. Minho Database Administration 34

● Do both recovery procedures:
– Redo, tail to head
– Undo, head to tail

Undo-redo log

2 6

2 2 C 66...

Backing store:

Log:

...

Does order matter?

U. Minho Database Administration 35

● Order matters only if:
– Unfinished t2 updates same item as finished t1
– t2 reads x before t1 writes x

● Means that:
– t1 and t2 would be concurrent transactions
– Both would have a lock on x!

Undo-redo log

x C x...

Log: t1 t2

U. Minho Database Administration 36

Undo-redo log summary
● If all log entries contain both undo and redo data:

– A block can be always be copied to backing store (steal)
– A transaction can always commit immediately (no force)

U. Minho Database Administration 37

Backup
● A full backup may take hours
● How to copy the database while processing update

transactions?

1 2 3 ...0

1 2 3 6 ...
Memory cache:

Backing store:

Log:

1 2 3 ...0
Store backup:

Log backup:

checkpoint

backup

U. Minho Database Administration 39

Case study: PostgreSQL
● Log method:

– Redo log (a.k.a. WAL)
– Undo log implicit in previous versions (updates never

overwrite!)
● Log format:

– Logical for most operations
– Physical, the first time each block is modified after a

checkpoint
● Background writer and periodical checkpoints
● On-line archiving and backup (a.k.a. PITR)

U. Minho Database Administration 40

Conclusions
● Atomicity and durability ensured by undo-redo logging

– Recovery
– Checkpointing

● Backup adds one more level and different trade-offs, but
the problem is fundamentally the same

	Slide 1
	Slide 2
	Slide 3
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 39
	Slide 40

