Redundancy

Database Administration
Lab Guide 3

2024/2025

Introduce redundancy in the toy benchmark to reduce I/O and computation. For each
change, evaluate its the impact by (i) observing the query plan and (ii) running the
benchmark for 1, 2, 4, §, ... threads and plotting the corresponding scalability curve.

Steps
1. Use indexesﬂ to improve the performance of the select queries:
CREATE INDEX [index_name] ON table_name [USING method] (coll [, col2, ...]1);

2. Use a materialized ViewE] to improve the performance for the top 10 operation.
Implement an appropriate refresh strategy:
CREATE MATERIALIZED VIEW mat_view_name AS SELECT ...;
REFRESH MATERIALIZED VIEW mat_view_name;

3. Add the recommended products operation and optimize using indexes:

* Follow the instructions in the appendix to prepare the weights.

* Create a prepared statement to compute the 10 most similar products to a
given product (id as argument), using the weights in the Embedding table.

e Implement the List<Integer> recommendedProducts () method,
which returns the list of identifiers of similar products. Update the t ransaction ()
method to include it with, e.g., 2% probability.

Questions

1. Are the indexes useful? Is clusterinﬂ the index useful?

2. Isit worth creating an index to optimize the query SELECT » FROM Product
WHERE price BETWEEN z AND y? Explain.

3. Is the materialized view useful? Which update strategy makes it useful?

4. How does each of these optimizations impact each operation alone?

5. What are the main advantages and disadvantages of introducing redundancy?
Learning Outcomes Recognize and explain the role of redundancy in relational

databases, in particular, by contrasting it with implementation decisions in object-
oriented programming.

Ihttps://www.postgresqgl.org/docs/17/indexes.html
Zhttps://www.postgresqgl.org/docs/17/rules-materializedviews.html
3https://www.postgresql.org/docs/17/sql-cluster.html

https://www.postgresql.org/docs/17/indexes.html
https://www.postgresql.org/docs/17/rules-materializedviews.html
https://www.postgresql.org/docs/17/sql-cluster.html

Preparing the weights
* Install the pgvector extension:

docker exec -t postgres bash -c "

apt update

apt install -y git make gcc postgresgl-server-dev-17

git clone —-branch v0.8.0 https://github.com/pgvector/pgvector.git
cd pgvector

make —-7j 8

make install

» Enable the extension in the target database:
docker exec -t postgres psql -U postgres -d testdb \
—c "create extension vector"
 Create the Embedding table and load the weights from the CSV file:

docker exec -t postgres psqgl -U postgres -d testdb \
—-c "create table embedding (ref varchar, embedding vector (1024))"

docker cp embedding.csv postgres:/

docker exec -t postgres psqgl -U postgres -d testdb \
—c "copy embedding from '/embedding.csv' with csv header"

¢ Details about indexing in the pgvector extension can be found at https://
github.com/pgvector/pgvector?tab=readme-ov-file#indexing.

https://github.com/pgvector/pgvector?tab=readme-ov-file#indexing
https://github.com/pgvector/pgvector?tab=readme-ov-file#indexing

Helper scripts to run and plot
Run (bash)

#!/bin/bash

CLIENTS=(1 2 4 8 16)

TIME=15

SCALE=16

mvn package -q || exit 1

populate

echo "Populating"
java —-jar target/benchmark-1.0-SNAPSHOT. jar \

-d Jjdbc:postgresqgl://localhost/testdb -U postgres —-P postgres \

-s SSCALE -p
echo "clients,tps,rt" > results.csv

run
for ¢ in "${CLIENTS[@]}"; do
echo "Running $c clients"
java —jar target/benchmark-1.0-SNAPSHOT. jar \

-d jdbc:postgresql://localhost/testdb -U postgres -P postgres \

-s $SCALE -x -c¢ $c -R STIME -W 1 > out.txt

tps=S$(grep -Po ' (?<=throughput \ (txn/s\) =).x' out.txt)
rt=$ (grep —-Po " (?<=response time \(s\) =).x" out.txt)
echo "$c, $tps, Srt" >> results.csv

done

Plot (python)

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt
import glob

dfs = []

for file in glob.glob('x.csv'):
df = pd.read_csv(file)
df['hue'] = file
dfs.append (df)

df = pd.concat (dfs, axis=0, ignore_index=True)

ax = sns.lineplot(x="'tps', y='rt', hue='hue', data=df,
ax.set_x1im(0)

ax.set_ylim(0)

plt.savefig('results.png', dpi=300)

marker='o"',

sort=False)

