
Database Administration

José Orlando Pereira

Departamento de Informática
Universidade do Minho



U. Minho Database Administration 55

Roadmap
● How to implement each solution?
● What solution for each problem?



U. Minho Database Administration 56

2-Phase Locking
● Acquire a lock for an item before reading or writing it
● All lock requests precede all unlock requests

– This means unlocking only on transaction commit
● Equivalent to acquiring all locks upfront



U. Minho Database Administration 57

Deadlocks
● Cannot easily be avoided:

– Interactive transactions
– Plan selected by the optimizer

● Can be detected:
– Wait-for graph
– Time-out

● Resolved by aborting one transaction



U. Minho Database Administration 58

Shared vs exclusive

● As read/read does not cause anomalies:
– Exclusive locks for writing
– Shared locks for reading

● More concurrency is possible

Compatible? Shared Exclusive

Shared Yes No

Exclusive No No



U. Minho Database Administration 59

Multi-level locking

● Row locks vs table locks

Database X

Table A
a ...

1 ...

2

3

...

Table B
b ...

1 ...

2

3

...

Table C
c ...

1 ...

2

3

...



U. Minho Database Administration 62

Locking Protocols
● Multiple dimensions:

– 2-phase locking
– Shared vs exclusive
– Granularity

● What combinations?
● How to select them?



U. Minho Database Administration 63

Read uncommitted (aka “browse”)
● Protocol:

– Exclusive locks on INSERT/UPDATE/DELETE until transaction 
complete

– No shared locks
● Allows:

– Lost update (in a single UPDATE statement)
– Dirty read
– Non-repeatable read
– Phantoms
– Write skew



U. Minho Database Administration 64

Read committed (aka “cursor stability”)
● Protocol:

– Exclusive locks on INSERT/UPDATE/DELETE until transaction 
complete

– Shared locks on each SELECT statement
● Allows:

– Lost update
– Dirty read
– Non-repeatable read
– Phantoms
– Write skew



U. Minho Database Administration 65

Repeatable read
● Protocol:

– Exclusive locks on INSERT/UPDATE/DELETE until transaction 
complete

– Shared locks on SELECT until transaction complete
● Allows:

– Lost update
– Dirty read
– Non-repeatable read
– Phantoms
– Write skew (on collections)



U. Minho Database Administration 66

Serializable
● Protocol:

– Exclusive locks on INSERT/UPDATE/DELETE until transaction 
complete

– Shared range/table locks on SELECT until trans. complete
● Allows:

– Lost update
– Dirty read
– Non-repeatable read
– Phantoms
– Write skew



U. Minho Database Administration 67

Serializable
● A lot of trouble to avoid phantoms:

– Table locking has has a large impact in concurrency
– Predicate locking or range locking using indexes adds 

complexity/overhead



U. Minho Database Administration 68

Multi-version

● Never overwrite, always 
create a new version

● Example transaction 1:
– insert (aa,11)
– insert (bb,22)

k v from to

aa 11 1

bb 22 1



U. Minho Database Administration 69

Multi-version

● Transaction 2:
– insert (cc,33)
– update (bb,44)

k v from to

aa 11 1

bb 22 1 2

cc 33 2

bb 44 2



U. Minho Database Administration 70

Multi-version

● Transaction 3:
– delete (aa)

k v from to

aa 11 1 3

bb 22 1 2

cc 33 2

bb 44 2



U. Minho Database Administration 71

Snapshot isolation
● Protocol:

– Read from version that existed when the transaction started 
(or local writes)

– On I/U/D, lock exclusive and first committer wins, others 
rollback

● Allows:
– Lost update
– Dirty read
– Non-repeatable read
– Phantoms
– Write skew



U. Minho Database Administration 72

Snapshot isolation
● To avoid that two transactions execute concurrently:

– Use explicit locking (SELECT FOR UPDATE)
– Make them write on the same data item

● If two transactions update the same item, they cannot 
execute concurrently:
– Prefer inserts to updates
– Be careful with:

● Counters
● Materialized views of aggregates



U. Minho Database Administration 73

Serializable snapshot isolation
● Protocol:

– Everything in SI plus...
– Detect RW dependencies and abort transactions when two 

consecutive found (might not be a cycle: false positive!)
● Allows:

– Lost update
– Dirty read
– Non-repeatable read
– Phantoms
– Write skew



U. Minho Database Administration 74

Serializable snapshot isolation
t1 t2

commit

write Y

read X and Y

commit

write X

read X and Y
r/w



U. Minho Database Administration 75

Serializable snapshot isolation
t1 t2

commit

write Y

read X and Ycommit

write X

read X and Y

r/w

Easy: test if there
are “future”
versions of X

(Very) Hard: Must
know all reads by

concurrent (committed
or active)

transactions



U. Minho Database Administration 76

Conclusions
● Rollback is not a convenience!
● Snapshot isolation combines all approaches
● Snapshot isolation is now preferred:

– Never blocks reads
– Easily becomes serializable

● Must avoid update hot-spots


	Slide 1
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

