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Roadmap
● How to implement each solution?
● What solution for each problem?



U. Minho Database Administration 56

2-Phase Locking
● Acquire a lock for an item before reading or writing it
● All lock requests precede all unlock requests

– This means unlocking only on transaction commit
● Equivalent to acquiring all locks upfront
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Deadlocks
● Cannot easily be avoided:

– Interactive transactions
– Plan selected by the optimizer

● Can be detected:
– Wait-for graph
– Time-out

● Resolved by aborting one transaction



U. Minho Database Administration 58

Shared vs exclusive

● As read/read does not cause anomalies:
– Exclusive locks for writing
– Shared locks for reading

● More concurrency is possible

Compatible? Shared Exclusive

Shared Yes No

Exclusive No No
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Multi-level locking

● Row locks vs table locks

Database X

Table A
a ...

1 ...

2

3

...

Table B
b ...

1 ...

2

3

...

Table C
c ...

1 ...

2

3

...
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Locking Protocols
● Multiple dimensions:

– 2-phase locking
– Shared vs exclusive
– Granularity

● What combinations?
● How to select them?
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Read uncommitted (aka “browse”)
● Protocol:

– Exclusive locks on INSERT/UPDATE/DELETE until transaction 
complete

– No shared locks
● Allows:

– Lost update (in a single UPDATE statement)
– Dirty read
– Non-repeatable read
– Phantoms
– Write skew
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Read committed (aka “cursor stability”)
● Protocol:

– Exclusive locks on INSERT/UPDATE/DELETE until transaction 
complete

– Shared locks on each SELECT statement
● Allows:

– Lost update
– Dirty read
– Non-repeatable read
– Phantoms
– Write skew
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Repeatable read
● Protocol:

– Exclusive locks on INSERT/UPDATE/DELETE until transaction 
complete

– Shared locks on SELECT until transaction complete
● Allows:

– Lost update
– Dirty read
– Non-repeatable read
– Phantoms
– Write skew (on collections)
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Serializable
● Protocol:

– Exclusive locks on INSERT/UPDATE/DELETE until transaction 
complete

– Shared range/table locks on SELECT until trans. complete
● Allows:

– Lost update
– Dirty read
– Non-repeatable read
– Phantoms
– Write skew
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Serializable
● A lot of trouble to avoid phantoms:

– Table locking has has a large impact in concurrency
– Predicate locking or range locking using indexes adds 

complexity/overhead
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Multi-version

● Never overwrite, always 
create a new version

● Example transaction 1:
– insert (aa,11)
– insert (bb,22)

k v from to

aa 11 1

bb 22 1
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Multi-version

● Transaction 2:
– insert (cc,33)
– update (bb,44)

k v from to

aa 11 1

bb 22 1 2

cc 33 2

bb 44 2
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Multi-version

● Transaction 3:
– delete (aa)

k v from to

aa 11 1 3

bb 22 1 2

cc 33 2

bb 44 2
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Snapshot isolation
● Protocol:

– Read from version that existed when the transaction started 
(or local writes)

– On I/U/D, lock exclusive and first committer wins, others 
rollback

● Allows:
– Lost update
– Dirty read
– Non-repeatable read
– Phantoms
– Write skew
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Snapshot isolation
● To avoid that two transactions execute concurrently:

– Use explicit locking (SELECT FOR UPDATE)
– Make them write on the same data item

● If two transactions update the same item, they cannot 
execute concurrently:
– Prefer inserts to updates
– Be careful with:

● Counters
● Materialized views of aggregates
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Serializable snapshot isolation
● Protocol:

– Everything in SI plus...
– Detect RW dependencies and abort transactions when two 

consecutive found (might not be a cycle: false positive!)
● Allows:

– Lost update
– Dirty read
– Non-repeatable read
– Phantoms
– Write skew
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Serializable snapshot isolation
t1 t2

commit

write Y

read X and Y

commit

write X

read X and Y
r/w
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Serializable snapshot isolation
t1 t2

commit

write Y

read X and Ycommit

write X

read X and Y

r/w

Easy: test if there
are “future”
versions of X

(Very) Hard: Must
know all reads by

concurrent (committed
or active)

transactions
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Conclusions
● Rollback is not a convenience!
● Snapshot isolation combines all approaches
● Snapshot isolation is now preferred:

– Never blocks reads
– Easily becomes serializable

● Must avoid update hot-spots
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